“能够保留小的负权重”是指激活函数在处理输入时,能够让一些小于零的输入(负值)保持一定的影响,而不是完全压制为零。以下是一个简单的例子来说明这一点:
例子:
假设我们有一个激活函数,如ReLU
在这个例子中,当输入为负数时,ReLU会将其输出为0,完全抹去了负权重的信息。
而对于具有保留小负权重特性的激活函数,例如Leaky ReLU
这里的 α是一个小的正数(如0.01)。当输入为负数时,Leaky ReLU仍然允许小的负值输出,例如,如果输入是-0.1,输出将是-0.001(假设α=0.01)。这样,Leaky ReLU能够保留负权重的信息,避免了“死亡神经元”的问题。
总结:
能够保留小的负权重的激活函数在处理负输入时,不会完全将其压制为零,而是让其输出一个小的负值,从而保留了一些有用的信息。这种特性有助于提高模型的学习能力和表现。