1、SuGaR: Surface-Aligned Gaussian Splatting for Efficient 3D Mesh Reconstruction and High-Quality Mesh Rendering
论文链接
https://arxiv.org/abs/2311.12775
项目链接
https://anttwo.github.io/sugar/
简介
3dgs 得到mesh
2、Semi-supervised Deep Multi-view Stereo
论文链接
https://arxiv.org/abs/2207.11699
项目链接
https://arxiv.org/abs/2207.11699
简介
半监督学习 利用风格迁移,在风格迁移之后利用了 Convolutional Spatial Propagation Network 得到更精确的深度信息。
涉及到的论文列表:
链接:https://zhuanlan.zhihu.com/p/105163034
论文源码: https://github.com/XinJCheng/CSPN/tree/master
1、Sparse-to-Dense: Depth Prediction from Sparse Depth Samples and a Single Image
2、Learning Affinity via Spatial Propagation Networks
3、Learning Depth with Convolutional Spatial Propagation Network
4、Depth Estimation via Affinity Learned with Convolutional Spatial Propagation Network
网络图
3 .GauSTAR: Gaussian Surface Tracking and Reconstruction
简介
3D高斯Splatting技术已经实现了静态场景的高效照片真实感渲染。最近的工作扩展了这些方法,以支持表面重建和跟踪。然而,由于复杂的拓扑变化,如表面出现、消失或分裂,用3D高斯曲线跟踪动态表面仍然具有挑战性。为了应对这些挑战,我们提出了GSTAR,一种新的方法,可以实现真实感绘制,精确的表面重建和对拓扑变化的一般动态场景的可靠三维跟踪。给定多视图捕捉作为输入,GSTAR将高斯面绑定到网格面来表示动态对象。对于具有一致拓扑的曲面,GSTAR维护网格拓扑并使用高斯函数跟踪网格。在拓扑发生变化的区域,GSTAR会自适应地解除高斯模型与网格的绑定,从而实现精确注册,并根据这些优化的高斯模型生成新的曲面。此外,我们引入了基于表面的场景流方法,为帧间跟踪提供了健壮的初始化。实验表明,我们的方法有效地跟踪和重建动态表面,提高一系列的应用。
方法
以多视图RGB-D视频作为输入,引入了高斯曲面–带有高斯贴图的网格这些贴图附着在它们的面上–这既可以实现准确的几何重建,又可以实现逼真的渲染