【微积分】2.3多元函数微分

这篇博客深入讲解了多元函数微分的概念,包括偏导数的定义和二阶偏导数,多元复合函数的求导法则,方向导数与梯度的几何意义,以及多元函数的泰勒公式和极值问题。还探讨了黑塞矩阵和矩阵的求导规则。
摘要由CSDN通过智能技术生成

1.偏导数

1.定义

函数 z = f ( x , y ) z=f\left( x,y \right) z=f(x,y)在点 ( x 0 , y 0 ) \left( x_0,y_0 \right) (x0,y0)关于自变量 x x x y y y的偏增量为
Δ z x = f ( x 0 + Δ x , y 0 ) − f ( x 0 , y 0 ) , Δ z y = f ( x 0 , y 0 + Δ y ) − f ( x 0 , y 0 ) . \varDelta z_x=f\left( x_0+\varDelta x,y_0 \right) -f\left( x_0,y_0 \right) ,\\ \varDelta z_y=f\left( x_0,y_0+\varDelta y \right) -f\left( x_0,y_0 \right) . Δzx=f(x0+Δx,y0)f(x0,y0),Δzy=f(x0,y0+Δy)f(x0,y0).
函数 z = f ( x , y ) z=f\left( x,y \right) z=f(x,y)在点 ( x 0 , y 0 ) \left( x_0,y_0 \right) (x0,y0)关于自变量 x x x y y y的偏导数定义为
f x ( x 0 , y 0 ) = ∂ f ∂ x ∣ x = x 0 y = y 0 = lim ⁡ Δ x → 0 Δ z x Δ x = lim ⁡ Δ x → 0 f ( x 0 + Δ x , y 0 ) − f ( x 0 , y 0 ) Δ x f y ( x 0 , y 0 ) = ∂ f ∂ y ∣ x = x 0 y = y 0 = lim ⁡ Δ x → 0 Δ z y Δ y = lim ⁡ Δ y → 0 f ( x 0 , y 0 + Δ y ) − f ( x 0 , y 0 ) Δ y f_x\left( x_0,y_0 \right) =\frac{\partial f}{\partial x}\mid_{\begin{array}{c} x=x_0\\ y=y_0\\ \end{array}}^{}=\lim_{\Delta x\rightarrow 0}\frac{\varDelta z_x}{\varDelta x}=\lim_{\Delta x\rightarrow 0}\frac{f\left( x_0+\Delta x,y_0 \right) -f\left( x_0,y_0 \right)}{\Delta x}\\ f_y\left( x_0,y_0 \right) =\frac{\partial f}{\partial y}\mid_{\begin{array}{c} x=x_0\\ y=y_0\\ \end{array}}^{}=\lim_{\Delta x\rightarrow 0}\frac{\varDelta z_y}{\varDelta y}=\lim_{\Delta y\rightarrow 0}\frac{f\left( x_0,y_0+\Delta y \right) -f\left( x_0,y_0 \right)}{\Delta y} fx(x0,y0)=xfx=x0y=y0=Δx0limΔxΔzx=Δx0limΔxf(x0+Δx,y0)f(x0,y0)fy(x0,y0)=yfx=x0y=y0=Δx0limΔyΔzy=Δy0limΔyf(x0,y0+Δy)f(x0,y0)偏导数的记号为:
f x ( x 0 , y 0 ) , ∂ f ∂ x ∣ x = x 0 y = y 0 , ∂ z ∂ x ∣ x = x 0 y = y 0 , f x , ∂ f ∂ x , ∂ z ∂ x ; f y ( x 0 , y 0 ) , ∂ f ∂ y ∣ x = x 0 y = y 0 , ∂ z ∂ y ∣ x = x 0 y = y 0 , f y , ∂ f ∂ y , ∂ z ∂ y ; f_x\left( x_0,y_0 \right) ,\frac{\partial f}{\partial x}\mid_{\begin{array}{c} x=x_0\\ y=y_0\\ \end{array}}^{},\frac{\partial z}{\partial x}\mid_{\begin{array}{c} x=x_0\\ y=y_0\\ \end{array}}^{},f_x,\frac{\partial f}{\partial x},\frac{\partial z}{\partial x};\\ f_y\left( x_0,y_0 \right) ,\frac{\partial f}{\partial y}\mid_{\begin{array}{c} x=x_0\\ y=y_0\\ \end{array}}^{},\frac{\partial z}{\partial y}\mid_{\begin{array}{c} x=x_0\\ y=y_0\\ \end{array}}^{},f_y,\frac{\partial f}{\partial y},\frac{\partial z}{\partial y}; fx(x0,y0),xfx=x0y=y0,xzx=x0y=y0,fx,xf,xz;fy(x0,y0),yfx=x0y=y0,yzx=x0y=y0,fy,yf,yz;同理,偏导数的概念还可以推广到二元函数以上的函数.例如三元函数 u = f ( x , y , z ) u=f(x,y,z) u=f(x,y,z)在点 ( x , y , z ) (x,y,z) (x,y,z)处对 x x x的偏导数定义为
f x ( x , y , z ) = lim ⁡ Δ x → 0 f ( x + Δ x , y , z ) − f ( x , y , z ) Δ x f_x\left( x,y,z \right) =\lim_{\Delta x\rightarrow 0}\frac{f\left( x+\Delta x,y,z \right) -f\left( x,y,z \right)}{\Delta x} fx(x,y,z)=Δx0limΔxf(x+Δx,y,z)f(x,y,z)

2.二阶偏导数

∂ ∂ x ( ∂ f ∂ x ) = ∂ 2 f ∂ x 2 = f x x ( x , y )      ∂ ∂ y ( ∂ f ∂ x ) = ∂ 2 f ∂ x ∂ y = f x y ( x , y ) \frac{\partial}{\partial x}\left( \frac{\partial f}{\partial x} \right) =\frac{\partial ^2f}{\partial x^2}=f_{xx}\left( x,y \right) \ \ \ \ \frac{\partial}{\partial y}\left( \frac{\partial f}{\partial x} \right) =\frac{\partial ^2f}{\partial x\partial y}=f_{xy}\left( x,y \right) x(xf)=x22f=fxx(x,y)    y(

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值