1 numpy、matplotlib\ tensorflow基本操作\梯度下降、激活函数

判断默认图

tensorboard展示

# -*- coding: UTF-8 -*-

# 引入tensorflow
import tensorflow as tf

# 构造图(Graph)的结构
# 用一个线性方程的例子 y = W * x + b
W = tf.Variable(2.0, dtype=tf.float32, name="Weight")  # 权重
b = tf.Variable(1.0, dtype=tf.float32, name="Bias")  # 偏差
x = tf.placeholder(dtype=tf.float32, name="Input")  # 输入
with tf.name_scope("Output"):      # 输出的命名空间
    y = W * x + b    # 输出

# const = tf.constant(2.0)  # 不需要初始化

# 定义保存日志的路径
path = "./log"

# 创建用于初始化所有变量(Variable)的操作
# 如果定义了变量,但没有初始化的操作,会报错
init = tf.global_variables_initializer()

# 创建 Session(会话)
with tf.Session() as sess:
    sess.run(init)  # 初始化变量
    writer = tf.summary.FileWriter(path, sess.graph)
    result = sess.run(y, {x: 3.0})  # 为 x 赋值 3
    print("y = W * x + b,值为 {}".format(result))  # 打印 y = W * x + b 的值,就是 7

np.linespace(-2,2,100)把区间均分为100个点

生成多张图

matplotply生成多张子图

matplotply输出碗状图形

梯度下降的动态演示

模拟线性回归

# -*- coding: UTF-8 -*-

"""
用梯度下降的优化方法来快速解决线性回归问题
"""

import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf

try:
    xrange = xrange  # Python 2
except:
    xrange = range   # Python 3

# 构建数据
points_num = 100
vectors = []

# 用 Numpy 的正态随机分布函数生成 100 个点
# 这些点的(x, y)坐标值对应线性方程 y = 0.1 * x + 0.2
# 权重(Weight)为 0.1,偏差(Bias)为 0.2
for i in xrange(points_num):
    x1 = np.random.normal(0.0, 0.66)
    y1 = 0.1 * x1 + 0.2 + np.random.normal(0.0, 0.04)
    vectors.append([x1, y1])

x_data = [v[0] for v in vectors]  # 真实的点的 x 坐标
y_data = [v[1] for v in vectors]  # 真实的点的 y 坐标

# 图像 1 :展示 100 个随机数据点
plt.plot(x_data, y_data, 'r*', label="Original data")  # 红色星形的点
plt.title("Linear Regression using Gradient Descent")
plt.legend()
plt.show()

# 构建线性回归模型
W = tf.Variable(tf.random_uniform([1], -1.0, 1.0))  # 初始化 Weight
b = tf.Variable(tf.zeros([1]))                      # 初始化 Bias
y = W * x_data + b                                  # 模型计算出来的 y

# 定义 loss function(损失函数)或 cost function(代价函数)
# 对 Tensor 的所有维度计算 ((y - y_data) ^ 2) 之和 / N
loss = tf.reduce_mean(tf.square(y - y_data))

# 用梯度下降的优化器来最小化我们的 loss(损失)
optimizer = tf.train.GradientDescentOptimizer(0.5)  # 设置学习率为 0.5
train = optimizer.minimize(loss)

# 创建会话
sess = tf.Session()

# 初始化数据流图中的所有变量
init = tf.global_variables_initializer()
sess.run(init)

# 训练 20 步
for step in xrange(20):
    # 优化每一步
    sess.run(train)
    # 打印出每一步的损失,权重和偏差
    print("第 {} 步的 损失={}, 权重={}, 偏差={}".format(step+1, sess.run(loss), sess.run(W), sess.run(b)))

# 图像 2 :绘制所有的点并且绘制出最佳拟合的直线
plt.plot(x_data, y_data, 'r*', label="Original data")  # 红色星形的点
plt.title("Linear Regression using Gradient Descent")  # 标题,表示 "梯度下降解决线性回归"
plt.plot(x_data, sess.run(W) * x_data + sess.run(b), label="Fitted line")  # 拟合的线
plt.legend()
plt.xlabel('x')
plt.ylabel('y')
plt.show()


激活函数

# -*- coding: UTF-8 -*-

import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf

# 创建输入数据
x = np.linspace(-7, 7, 180)  # (-7, 7) 之间等间隔的 180 个点


# 激活函数的原始实现
def sigmoid(inputs):
    y = [1 / float(1 + np.exp(-x)) for x in inputs]
    return y


def relu(inputs):
    y = [x * (x > 0) for x in inputs]
    return y


def tanh(inputs):
    y = [(np.exp(x) - np.exp(-x)) / float(np.exp(x) - np.exp(-x)) for x in inputs]
    return y


def softplus(inputs):
    y = [np.log(1 + np.exp(x)) for x in inputs]
    return y


# 经过 TensorFlow 的激活函数处理的各个 Y 值
y_sigmoid = tf.nn.sigmoid(x)
y_relu = tf.nn.relu(x)
y_tanh = tf.nn.tanh(x)
y_softplus = tf.nn.softplus(x)

# 创建会话
sess = tf.Session()

# 运行
y_sigmoid, y_relu, y_tanh, y_softplus = sess.run([y_sigmoid, y_relu, y_tanh, y_softplus])

# 创建各个激活函数的图像
plt.figure(1, figsize=(8, 6))

plt.subplot(221)
plt.plot(x, y_sigmoid, c='red', label='Sigmoid')
plt.ylim((-0.2, 1.2))
plt.legend(loc='best')

plt.subplot(222)
plt.plot(x, y_relu, c='red', label='Relu')
plt.ylim((-1, 6))
plt.legend(loc='best')

plt.subplot(223)
plt.plot(x, y_tanh, c='red', label='Tanh')
plt.ylim((-1.3, 1.3))
plt.legend(loc='best')

plt.subplot(224)
plt.plot(x, y_softplus, c='red', label='Softplus')
plt.ylim((-1, 6))
plt.legend(loc='best')

# 显示图像
plt.show()

# 关闭会话
sess.close()

 

展开阅读全文

没有更多推荐了,返回首页