MIT线性代数第九讲-线性相关、线性无关

该篇博客探讨了线性代数中的核心概念,包括解的存在性——当方程个数少于未知数时非零解的存在;线性相关性的定义和判断,指出二维空间三个向量必然线性相关;生成空间的解释,即所有向量线性组合形成的空间;以及基和维数的概念,强调基向量的数量决定了空间的维数,并给出了不同维度空间的基向量示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

解的存在性:

Ax=b, A.shape=(m,n)m<n A . s h a p e = ( m , n ) , m < n ,未知数的个数大于方程的个数,由此推断:Ax=0存在非0解,Ax=0的解存在的原因是矩阵消元后存在自由列。

线性相关性:
  • 定义: x1,x2,...,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值