4.1线性方程组基础知识结构
主要任务就是求解方程组
4.2线性方程组和向量组其实是一回事
aij所组成的矩阵
m行就是所给方程的个数,n列就是未知量的个数。
增广矩阵的定义: 这里将向量组和方程组做一个联系:
该方程组的未知数就是向量组中各成员的个数。
β能否被由x线性表示。(非齐次方程组) x之间是否线性相关。
在这里拓展一下克莱姆法则:可以用来解出线性方程组的未知数:(由于计算量较大,不会用于求方程组的解,只用于判断零解和非零解。)
4.3齐次线性方程
1.有解的条件
如果有非零解,就是有无穷多个解,有n-r个线性无关解。
一个大人约束只能抓住一个自由小孩子,那么还有两个自由小孩子就可以自由跑。
自由变量经常赋值1,0。
即表示了无穷多解。
所以我们想要表示无穷多解,基础解系就出来了,以下是满足的条件。
解的向量空间称之为解空间。
n维向量空间
三维的线性无关的基表示
二维的解向量空间
求解方法和步骤
为神马只能做行变换
可以解出来X
这样求出来的就是Q逆X。
注:考研当天,做初等行变换,箭头上 什么都不需要有。
ep:
齐次线性:AX=0
解一般是列向量。
变量(未知数)的个数叫维度。
following:如果继续消元
如何化简成行最简阶梯型:
需要满足point 1,2,3,4.
考研的时候只需要化简成行阶梯型矩阵就可以了。
按列找出秩为3的子矩阵。(约数住三个线性无关的变量)
剩下两个自由变量。
S表示自由度。5-3=2
x3和x5是线性无关的,我们把它看成二维的(1 0
0 1)
那么延长之后依然线性无关。
二维空间是五维空间的子空间,还有3个维度被约束住了。
同志们,属于是开启 new land了。
4.4非齐次方程组
原来叫做自由矩阵,加上自由量之后叫做增广矩阵。
若r(A)!=r([A,b])
只有一种情况,
列满秩的情况下,a1,a2~an线性无关,但b可以由a1~an线性表示,说明a1,a2~an,b线性相关,且表示法唯一。(也就是没有自由度了)
S=
S=n-r(A)>0就有自由度了,也就有无穷多解
非齐次方程组的通解=非齐次方程组的通解+齐次方程组的特解。
开始做题目了:
由于非齐次方程组有无穷多解,其次通解和非齐次特解。
先找齐次方程组的通解:
通解就可以得出来了
下面找到非齐次方程的特解:
自由变量令之为0。
整个解的情况就出来了
含参方程组(考研爱考)
4.5抽象线性方程组,公共解与同解方程组
抽象型的四个基本问题:
考研易出现的题型
也可以称之为AX=0是AX=b的导出组。
A还可能无解,可能增广b给多了,ep:维数只有二,秩也为2.但有五个方程。
4-2=2 自由解系有两个
r(A)<min{2,3}=2
r(B)<min{3,2}=2
3.A的伴随矩阵的方程组的基础解系与A原方程的关系。
意思是只能有一个基础解系。
a1和a3可以进行线性表示。
也就是系数都是解。
阿发之间的关系就是齐次方程的解
阿发与β之间的关系就是非齐次方程的解
两个方程组的公共解
令他们的通解相等,找他们的公共解。
解出k1=2k2
公共解的维数不再是二维了,变成一维了。
四。同解方程组
类比记忆等价向量组的充要条件:
可以互相表示
秩相同,且可以单方向表出。
三秩相同:r(A|B)
易解出(I)的基础解系为
(II)有四个方程,比(|)多了一个约束。所以(I|)的解必然是(|)的解。
b和a的关系就可以表示出来了。