线代基础第四讲——方程组

文章介绍了线性方程组的基本概念,包括齐次和非齐次方程的解法,强调了增广矩阵在解题中的作用,以及克莱姆法则在判断解的存在性上的应用。同时,讨论了解空间、基础解系和解的维度,特别提到了行变换在简化方程组中的重要性。
摘要由CSDN通过智能技术生成

4.1线性方程组基础知识结构

 主要任务就是求解方程组

4.2线性方程组和向量组其实是一回事

aij所组成的矩阵

m行就是所给方程的个数,n列就是未知量的个数。

增广矩阵的定义: 这里将向量组和方程组做一个联系:

 

该方程组的未知数就是向量组中各成员的个数。

 β能否被由x线性表示。(非齐次方程组)      x之间是否线性相关。

 

在这里拓展一下克莱姆法则:可以用来解出线性方程组的未知数:(由于计算量较大,不会用于求方程组的解,只用于判断零解和非零解。)

 

 

 

 

4.3齐次线性方程

1.有解的条件

 如果有非零解,就是有无穷多个解,有n-r个线性无关解。

 

 一个大人约束只能抓住一个自由小孩子,那么还有两个自由小孩子就可以自由跑。

 自由变量经常赋值1,0。

即表示了无穷多解。

 所以我们想要表示无穷多解,基础解系就出来了,以下是满足的条件。

 解的向量空间称之为解空间。

 n维向量空间

三维的线性无关的基表示

 

二维的解向量空间 

求解方法和步骤

为神马只能做行变换

 可以解出来X

 这样求出来的就是Q逆X。

注:考研当天,做初等行变换,箭头上 什么都不需要有。

ep:

齐次线性:AX=0

解一般是列向量。

变量(未知数)的个数叫维度。

following:如果继续消元

如何化简成行最简阶梯型:

 需要满足point 1,2,3,4.

考研的时候只需要化简成行阶梯型矩阵就可以了。

按列找出秩为3的子矩阵。(约数住三个线性无关的变量)

剩下两个自由变量。

S表示自由度。5-3=2

 x3和x5是线性无关的,我们把它看成二维的(1   0

                                                                          0   1)

那么延长之后依然线性无关。

二维空间是五维空间的子空间,还有3个维度被约束住了。

 同志们,属于是开启 new land了。

4.4非齐次方程组

 原来叫做自由矩阵,加上自由量之后叫做增广矩阵。

若r(A)!=r([A,b])

只有一种情况, 

 

 

 列满秩的情况下,a1,a2~an线性无关,但b可以由a1~an线性表示,说明a1,a2~an,b线性相关,且表示法唯一。(也就是没有自由度了)

S=

 S=n-r(A)>0就有自由度了,也就有无穷多解

 非齐次方程组的通解=非齐次方程组的通解+齐次方程组的特解。

开始做题目了:

 

 

由于非齐次方程组有无穷多解,其次通解和非齐次特解。

先找齐次方程组的通解:

 通解就可以得出来了

 下面找到非齐次方程的特解:

自由变量令之为0。

 整个解的情况就出来了

 含参方程组(考研爱考)

 

4.5抽象线性方程组,公共解与同解方程组

抽象型的四个基本问题:

 

考研易出现的题型 

 也可以称之为AX=0是AX=b的导出组。

A还可能无解,可能增广b给多了,ep:维数只有二,秩也为2.但有五个方程。

 

 

 

 4-2=2  自由解系有两个

 r(A)<min{2,3}=2

r(B)<min{3,2}=2

3.A的伴随矩阵的方程组的基础解系与A原方程的关系。

 意思是只能有一个基础解系。

 

 a1和a3可以进行线性表示。

 也就是系数都是解。

阿发之间的关系就是齐次方程的解

阿发与β之间的关系就是非齐次方程的解

 

两个方程组的公共解

 

 

 

 

 令他们的通解相等,找他们的公共解。

解出k1=2k2

 公共解的维数不再是二维了,变成一维了。

四。同解方程组

类比记忆等价向量组的充要条件:

可以互相表示 

秩相同,且可以单方向表出。

三秩相同:r(A|B)

易解出(I)的基础解系为

 

(II)有四个方程,比(|)多了一个约束。所以(I|)的解必然是(|)的解。

 

 b和a的关系就可以表示出来了。

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值