机器学习-算法学习笔记_1-Logistic 算法

Logistic Regression 算法简介

逻辑回归(Logistic regression,简称LR)虽然其中带有"回归"两个字,但逻辑回归其实是一个分类模型,并且广泛应用于各个领域之中。虽然现在深度学习相对于这些传统方法更为火热,但实则这些传统方法由于其独特的优势依然广泛应用于各个领域中。
而对于逻辑回归而言,最为突出的两点就是其模型简单和模型的可解释性强。

逻辑回归模型的优劣势:

优点

  1. 适用于二分类问题;
  2. 实现简单,易于理解和实现;
  3. 计算代价不高,速度很快,存储资源低;

缺点

  1. 由于预测结果成z字形, 因此当数据集中在中间区域时,对概率的变化就会很敏感,可能会使得预测结果缺乏区分度;
  2. 由于逻辑回归依然是线性划分,对于非线性的数据集适应性弱。
  3. 当特征空间很大,性能欠佳。

原理-函数相关

因此理想的替代函数应当预测分类为0或1的概率,当为1的概率大于0.5时,判断为1,当为1的概率小于0.5时,判断为0。因概率的值域为 [ 0 , 1 ] [0,1] [0,1],这样的设定比线性回归合理很多。

常用的替代函数为Sigmoid函数,即:

h ( z ) = 1 1 + e − z h(z) = \frac{1}{1+e^{-z}} h(z)=1+ez1
其中, z = θ T x z = \theta^T x z=θTx

我们可以看到,当z大于0时,函数大于0.5;当函数等于0时,函数等于0.5;函数小于0时,函数小于0.5。如果用函数表示目标分到某一类的概率,我们可以采用以下“单位阶跃函数”来判断数据的类别:

h ( z ) = { 0 , z < 0 0.5 , z = 0 1 , z > 0 h(z) = \left\{ \begin{aligned} 0 , z< 0 \\ 0.5 ,z=0 \\ 1,z>0 \end{aligned} \right. h(z)=0,z<00.5z=01z>0
若Z大于0,则判断为正例;若小于0,判断为反例;若等于0,可任意判别。由于Sigmoid函数单调且可导,函数在(0,1)之间程Z字型,可以很好的模拟二分类情况,因此很适合我们要解决的问题。

注:另一种判别方法:
若Z>= 0 ,则h(z)>=0.5,则判断为正例;
若Z< 0 ,则h(z)<0.5,则判断为负例;

代码实现如下:

以iris 数据为例:


#2020/08/19  LogisticRegression 实现

#1、导入函数库

##  基础函数库
import numpy as np 
import pandas as pd

## 绘图函数库
import matplotlib.pyplot as plt
import seaborn as sns
#--------------------------
#2、数据读取/载入
##我们利用sklearn中自带的iris数据作为数据载入,并利用Pandas转化为DataFrame格式
from sklearn.datasets import load_iris
data = load_iris() #得到数据特征
iris_target = data.target #得到数据对应的标签
iris_features = pd.DataFrame(data=data.data, columns=data.feature_names) #利用Pandas转化为DataFrame格式

#--------------------------

#3、数据信息简单查看
##利用.info()查看数据的整体信息
iris_features.info()


##进行简单的数据查看,我们可以利用.head()头部.tail()尾部
iris_features.head()

iris_features.tail()


##利用value_counts函数查看每个类别数量

pd.Series(iris_target).value_counts()



##对于特征进行一些统计描述

iris_features.describe()



#--------------------------
#4、 可视化描述

## 合并标签和特征信息
iris_all = iris_features.copy() ##进行浅拷贝,防止对于原始数据的修改
iris_all['target'] = iris_target

## 特征与标签组合的散点可视化
sns.pairplot(data=iris_all,diag_kind='hist', hue= 'target')
plt.show()


##箱型图查看不同类别的在不同特征上的分布差异;
for col in iris_features.columns:
    sns.boxplot(x='target', y=col, saturation=0.5, 
palette='pastel', data=iris_all)
    plt.title(col)
    plt.show()



# 选取其前三个特征绘制三维散点图
from mpl_toolkits.mplot3d import Axes3D

fig = plt.figure(figsize=(10,8))
ax = fig.add_subplot(111, projection='3d')

iris_all_class0 = iris_all[iris_all['target']==0].values
iris_all_class1 = iris_all[iris_all['target']==1].values
iris_all_class2 = iris_all[iris_all['target']==2].values
# 'setosa'(0), 'versicolor'(1), 'virginica'(2)
ax.scatter(iris_all_class0[:,0], iris_all_class0[:,1], iris_all_class0[:,2],label='setosa')
ax.scatter(iris_all_class1[:,0], iris_all_class1[:,1], iris_all_class1[:,2],label='versicolor')
ax.scatter(iris_all_class2[:,0], iris_all_class2[:,1], iris_all_class2[:,2],label='virginica')
plt.legend()

plt.show()


#--------------------------

#5、LR模型在二分类上进行训练、预测

##为了正确评估模型性能,将数据划分为训练集和测试集,并在训练集上训练模型,在测试集上验证模型性能。
from sklearn.model_selection import train_test_split
##选择其类别为0和1的样本(不包括类别为2的样本)
iris_features_part=iris_features.iloc[:100]
iris_target_part=iris_target[:100]
##测试集大小为20%,80%/20%分
x_train,x_test,y_train,y_test=train_test_split(iris_features_part,iris_target_part,test_size=0.2,random_state=2020)


##从sklearn中导入逻辑回归模型
from sklearn.linear_model import LogisticRegression


##定义逻辑回归模型
clf=LogisticRegression(random_state=0,solver='lbfgs')


##在训练集上训练逻辑回归模型
clf.fit(x_train,y_train)



##查看其对应的w
print('the weight of Logistic Regression:',clf.coef_)

##查看其对应的w0
print('the intercept(w0) of Logistic Regression:',clf.intercept_)


##在训练集和测试集上分别利用训练好的模型进行预测
train_predict=clf.predict(x_train)
test_predict=clf.predict(x_test)

from sklearn import metrics
##利用accuracy(准确度)【预测正确的样本数目占总预测样本数目的比例】评估模型效果
print('The accuracy of the Logistic Regression is:',metrics.accuracy_score(y_train,train_predict))
print('The accuracy of the Logistic Regression is:',metrics.accuracy_score(y_test,test_predict))

##查看混淆矩阵(预测值和真实值的各类情况统计矩阵)
confusion_matrix_result=metrics.confusion_matrix(test_predict,y_test)
print('The confusion matrix result:\n',confusion_matrix_result)

##利用热力图对于结果进行可视化
plt.figure(figsize=(8,6))
sns.heatmap(confusion_matrix_result,annot=True,cmap='Blues')
plt.xlabel('Predictedlabels')
plt.ylabel('Truelabels')
plt.show()

##The accuracy of the Logistic Regressionis:1.0
##The accuracy of the Logistic Regressionis:1.0
##The confusion matrix result:
##[[9  0]
##[0  11]]


#--------------------------
#6、利用LR模型在三分类(多分类)上 训练、预测

##测试集大小为20%,80%/20%分
x_train,x_test,y_train,y_test=train_test_split(iris_features,iris_target,test_size=0.2,random_state=2020)

##定义逻辑回归模型
clf=LogisticRegression(random_state=0,solver='lbfgs')

##在训练集上训练逻辑回归模型
clf.fit(x_train,y_train)

##查看其对应的w
print('the weight of Logistic Regression:\n',clf.coef_)
##查看其对应的w0
print('the intercept(w0) of Logistic Regression:\n',clf.intercept_)
##由于这个是3分类,所有我们这里得到了三个逻辑回归模型的参数,其三个逻辑回归组合起来即可实现三分类

##在训练集和测试集上分布利用训练好的模型进行预测
train_predict=clf.predict(x_train)
test_predict=clf.predict(x_test)
##由于逻辑回归模型是概率预测模型(前文介绍的p=p(y=1|x,\theta)),所有我们可以利用predict_proba函数预测其概率

train_predict_proba=clf.predict_proba(x_train)
test_predict_proba=clf.predict_proba(x_test)

print('The test predict Probability of each class:\n',test_predict_proba)
##其中第一列代表预测为0类的概率,第二列代表预测为1类的概率,第三列代表预测为2类的概率。

##利用accuracy(准确度)【预测正确的样本数目占总预测样本数目的比例】评估模型效果
print('The accuracy of the Logistic Regression is:',metrics.accuracy_score(y_train,train_predict))
print('The accuracy of the Logistic Regression is:',metrics.accuracy_score(y_test,test_predict))


##查看混淆矩阵
confusion_matrix_result=metrics.confusion_matrix(test_predict,y_test)
print('The confusion matrix result:\n',confusion_matrix_result)

##利用热力图对于结果进行可视化
plt.figure(figsize=(8,6))
sns.heatmap(confusion_matrix_result,annot=True,cmap='Blues')
plt.xlabel('Predicted labels')
plt.ylabel('True labels')
plt.show()

##The confusion matrix result:
##[[10  0   0]
##[0   8   2] 
##[0   2   8]]

以上仅为初学者学习备注,如果有不对的地方,欢迎指出,大家一起讨论,共同成长,谢谢~

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值