【问题描述】
给出平面上一组顶点的坐标,计算出它们所围成的凸多边形的面积。
【输入形式】
从标准输入读取顶点坐标。格式为:第一行是点的个数N(3≤N≤15),后面紧接着N行,每行两个数字 (由空格隔开),分别表示该点的X、Y坐标(0≤X,Y≤32767)。所有点的坐标互不相同,且按顺时针次序给出。
输入数据确保该多边形是一个凸多边形。
【输出形式】
向标准输出打印一个浮点数,是该多边形的面积。该浮点数保留两位小数。
【输入样例】
4
3 3
3 0
1 0
1 2
【输出样例】
5.00
【样例说明】输入数据表示了如图所示的四边形。其面积为5.00。
题目分析:
- 自作答案:
//北航机试2020/3/23
#include<stdio.h>
#include<math.h>
struct Point
{
double x,y;
}points[100];
int N;
double get_distance(Point a,Point b)
{
double t = (a.x-b.x)*(a.x-b.x);
double t1 = (a.y-b.y)*(a.y-b.y);
return sqrt(t+t1);
}
double get_area(Point a,Point b,Point c)
{
double d1 = get_distance(a,b);
double d2 = get_distance(a,c);
double d3 = get_distance(b,c);
double p =(d1 + d2 + d3)/2;
return sqrt(p*(p-d1)*(p-d2)*(p-d3));
}
double sum_area = 0;
int main()
{
int i,j;
scanf("%d",&N);
for(i = 0;i<N;i++)
{
scanf("%lf%lf",&points[i].x,&points[i].y);
}
for(i = 1;i<=N-2;i++)
{
sum_area += get_area(points[0],points[i],points[i+1]);
}
printf("%.2lf\n",sum_area);
return 0;
}