第五章 动态规划(1):数字三角形模型

1、数字三角形(基础模型)

ACWing 898

注:行列表示
在这里插入图片描述
集合

f [ i ] [ j ] f[i][j] f[i][j]:所有从起点 ( 1 , 1 ) (1,1) (1,1),走到 ( i , j ) (i,j) (i,j) 的路径上的数值和的最大值。

集合划分:

  • 来自左上的最大值: f [ i ] [ j ] = f [ i − 1 ] [ j − 1 ] + a [ i ] [ j ] f[i][j] = f[i-1][j-1] + a[i][j] f[i][j]=f[i1][j1]+a[i][j]
  • 来自右上的最大值: f [ i ] [ j ] = f [ i − 1 ] [ j ] + a [ i ] [ j ] f[i][j] = f[i-1][j] + a[i][j] f[i][j]=f[i1][j]+a[i][j]

状态计算:
f [ i ] [ j ] = m a x ( f [ i − 1 ] [ j − 1 ] , f [ i − 1 ] [ j ] ) + a [ i ] [ j ] f[i][j]= max(f[i-1][j-1], f[i-1][j]) + a[i][j] f[i][j]=max(f[i1][j1],f[i1][j])+a[i][j]

注意: 矩阵 f [ N ] [ N ] f[N][N] f[N][N] 的初始化,由于状态方程的计算中存在 [ i − 1 , j − 1 ] [i-1,j-1] [i1,j1],故行要将多出来的第 0 0 0 行初始化为 − I N F -INF INF,列要将多出来的第 0 0 0 列和第 i + 1 i+1 i+1 列初始化为 − I N F -INF INF,因为当取值从右上传过来的时候需要多出一列 − I N F -INF INF
在这里插入图片描述

#include <iostream>
#include <algorithm>
using namespace std;

const int N = 510, INF = 0x3f3f3f3f;

int n, w, f[N][N];

int main() {
    scanf("%d", &n);
    for (int i = 0; i <= n; i ++ )
        for (int j = 0; j <= i + 1; j ++ )
            f[i][j] = -INF;
    int res = -INF;
    for (int i = 1; i <= n; i ++ )
        for (int j = 1; j <= i; j ++ ) {
            scanf("%d", &w);
            if (i == 1 && j == 1) f[i][j] = w;
            else f[i][j] = max(f[i - 1][j - 1], f[i - 1][j]) + w;
            if (i == n) res = max(res, f[n][j]);
        }
    printf("%d\n", res);
    return 0;
}

2、摘花生

ACWing 1015

注: 算法题和传统数学题的坐标系是不一样的,下图是算法题中的坐标。
在这里插入图片描述
集合

f[i,j]:所有从起点(1, 1),走到(i, j)的路径上的花生数量最大值

集合划分:
在这里插入图片描述

状态计算:

f[i, j] = max(f[i - 1, j] + w[i, j], f[i, j - 1] + w[i, j])

注意区分:

这个题的代码和上个题的代码中f[1][1]的初始化不同,因为上一个题中三角形的数据有可能是负数,所以最初f[i][j]中的所有数据要初始为-INF,然后将f[1][1]初始化为a[1][1],如果过没有f[1][1] = a[1][1]的初始化,那么结果将是比-INF略大的数据。

而本题是所有花生的数量均为正数,所以f[i][j]初始化为0即可。

#include <iostream>
#include <algorithm>
using namespace std;

const int N = 110;

int n, m;
int w, f[N][N];

int main() {
    int T; scanf("%d", &T);
    while (T--) {
        scanf("%d%d", &n, &m);
        for (int i = 1; i <= n; i++)
            for (int j = 1; j <= m; j++) {
                scanf("%d", &w);
                f[i][j] = max(f[i - 1][j], f[i][j - 1]) + w;
            }
        printf("%d\n", f[n][m]);
    }
    return 0;
}

3、最低通行费

ACWing 1018

由条件商人必须在 (2N−1) 个单位时间穿越出去且该图是一个正方形,故可以得出结论:商人在走路的过程中不可以走回头路!

几点注意:

  • 这个题求的是最小值,所以要对边界做初始化;
  • 对于f[1][1]的初始化,理由同第一题,边界上有INF都要注意初始化,如果不做特殊处理,因为它的值有两个方向决定,而这两个方向都带有INF(很重要这一点!)。
#include <iostream>
#include <algorithm>
using namespace std;

const int N = 110, INF = 0x3f3f3f3f;

int n;
int w, f[N][N];

int main() {
    scanf("%d", &n);
    for (int i = 0; i <= n; i++) f[i][0] = f[0][i] = INF;
    for (int i = 1; i <= n; i++)
        for (int j = 1; j <= n; j++) {
            scanf("%d", &w);
            if (i == 1 && j == 1) f[i][j] = w;
            else f[i][j] = min(f[i - 1][j], f[i][j - 1]) + w;
        }
    printf("%d\n", f[n][n]);
    return 0;
}

4、方格取数

ACWing 1027

算法思路:与摘花生类似

同时走,走两次:

  • f[i1, j1, i2, j2]:表示所有从(1, 1)、(1, 1)分别走到(i1, j1)、(i2, j2)的路径的最大值;
  • 如何处理 ”同一个格子不能被重复选择” ?
    • 什么时候它们会走到同一个格子呢?满足条件:i1 + j1 = i2 + j2并且它们的步数相同的时候才会走到相同的格子,这里我们使用k来到表它们的步数;
  • 状态优化(从四维降为三维):f[k, i1, i2]表示所有从(1, 1)、(1, 1)分别走到(i1, k - i1)、(i2, k - i2)的路径的最大值,其中k = i1 + j1 = i2 + j2
  • 集合划分(每条路径都是看最后一次怎么走):
    • 第一类:第一条路径最后一次往走,第二条路径最后一次往走;
    • 第二类:第一条路径最后一次往走,第二条路径最后一次往走;
    • 第三类:第一条路径最后一次往走,第二条路径最后一次往走;
    • 第四类:第一条路径最后一次往走,第二条路径最后一次往走;
    • 如图:在这里插入图片描述
  • 状态计算:
    • 第一类:
      • 第一条路径:(1, 1) -> (i1 - 1, j1) -> (i1, j1)
      • 第二条路径:(1, 1) -> (i2 - 1, j2) -> (i2, j2)
      • 对于两条路径前面一部分(1, 1) -> (i1 - 1, j1) 和 (1, 1) -> (i2 - 1, j2) 的最大值即为max(f(k - 1, i1 - 1, i2 - 1))
      • 对于后面一部分,要分情况考虑:
        • 当两个结点重合的时候,i1 = i2, j1 = j2,就是它们之前上一个点走到的是同一个点,就只需要加上w(i1, j1)
        • 当两个结点不重合的时候,就需要加上:w(i1, j1) + w(i2, j2)
    • 其他三类的最大值同理,最后结果为每一类的最大值再取一个最大值。

注意:这个题不能分开走的原因

这样不能得到最大值。因为第一遍的最优解可能有非常多种方案,你并不能确定采用哪一种。第二遍的最大值依赖于第一遍选择哪种方案,而所有第一遍取最大值的方案数量可能是指数级别的。

#include <iostream>
#include <algorithm>
using namespace std;

const int N = 15;

int n;
int w[N][N], f[N * 2][N][N];

int main() {
    cin >> n;
    int a, b, c;
    while (cin >> a >> b >> c, a || b || c) w[a][b] = c;
    for (int k = 2; k <= n + n; k++)
        for (int i1 = 1; i1 <= n; i1++)
            for (int i2 = 1; i2 <= n; i2++) {
                int j1 = k - i1, j2 = k - i2;
                if (j1 >= 1 && j1 <= n && j2 >= 1 && j2 <= n) {
                    int t = w[i1][j1];
                    if (i1 != i2) t += w[i2][j2];
                    int &x = f[k][i1][i2];
                    x = max(x, f[k - 1][i1 - 1][i2 - 1] + t);
                    x = max(x, f[k - 1][i1 - 1][i2] + t);
                    x = max(x, f[k - 1][i1][i2 - 1] + t);
                    x = max(x, f[k - 1][i1][i2] + t);
                }
            }
    cout << f[n + n][n][n];
    return 0;
}

更简洁的写法

#include <iostream>
#include <algorithm>
using namespace std;

const int N = 15;

int n;
int w[N][N], f[N * 2][N][N];

int main() {
    scanf("%d", &n);
    int a, b, c;
    while (scanf("%d%d%d", &a, &b, &c), a || b || c) w[a][b] = c;
    for (int k = 2; k <= n + n; k++)
        for (int i1 = 1; i1 <= n; i1++)
            for (int i2 = 1; i2 <= n; i2++) {
                int j1 = k - i1, j2 = k - i2;
                if (j1 < 1 || j1 > n || j2 < 1 || j2 > n) continue;
                int t = w[i1][j1];
                if (j1 != j2) t += w[i2][j2];
                for (int a = 0; a <= 1; a++)
                    for (int b = 0; b <= 1; b++)
                        f[k][i1][i2] = max(f[k][i1][i2], f[k - 1][i1 - a][i2 - b] + t);
            }
    printf("%d\n", f[n + n][n][n]);
    return 0;
}

5、传纸条

ACwing 275

注:从右下角回传可以等价为从左上角同时传两次

集合

f[k,x1,x2]:所有第一条线路从[1,1]走到[x1,k-x1],第二条线路从[1,1]走到[x2,k-x2]的路线组合的最大值,其中k = x1 + y1 = x2 + y2k代表步数。

集合划分

按两条路线最后一步走的方向来划分:

在这里插入图片描述

状态计算

第一类

  • 第一条路线:[1, 1] → [x1, k-1-x1] → [x1, k-x1]
  • 第二条路线:[1, 1] → [x2, k-1-x2] → [x2, k-x2]
  • 两条路线前k-1步计算简单:max(f[k-1,x1,x2])
  • 最后一步:如果两条路线在这一步走到的点重合,就相加一次,否则加两次。

第二类

  • 第一条路线:[1, 1] → [x1, k-1-x1] → [x1, k-x1]
  • 第二条路线:[1, 1] → [x2-1, k-x2] → [x2, k-x2]
  • 两条路线前k-1步计算简单:max(f[k-1,x1,x2-1])
  • 最后一步:如果两条路线在这一步走到的点重合,就相加一次,否则加两次。

其余两个状态分析类似。

注意

  • 这个题和上一题的区别在于:如果重合就表示有一条路不让走了,但是上一题无此约束;
  • 矩阵中所有值非负,所以矩阵可以初始化为0
  • 对于x1的取值,因为有1 <= x1 <= n1 <= k-x1 <= m,所以有max(1, k-m) <= x1 <= max(k-1, n)x2的范围同理;
  • 不允许走同一个点的体现:除了起点和终点之外,只有i != j时,才能去更新其它状态,这样就保证了不走同一个格子。 关于这个证明看链接
#include <cstring>
#include <iostream>
#include <algorithm>

using namespace std;

const int N = 55;

int n, m;
int w[N][N], f[N * 2][N][N];

int main() {
    scanf("%d%d", &n, &m);
    for (int i = 1; i <= n; i++)
        for (int j = 1; j <= m; j++)
            scanf("%d", &w[i][j]);
    for (int k = 2; k <= n + m; k++)
        for (int x1 = max(1, k - m); x1 <= min(k - 1, n); x1++)
            for (int x2 = max(1, k - m); x2 <= min(k - 1, n); x2++) {
                int t = w[x1][k - x1];
                if (x2 != x1) t += w[x2][k - x2];
                for (int a = 0; a <= 1; a++)
                    for (int b = 0; b <= 1; b++)
                        f[k][x1][x2] = max(f[k][x1][x2], f[k - 1][x1 - a][x2 - b] + t);
            }
    printf("%d\n", f[n + m][n][n]);
    return 0;
}

下面是使用上一个题的写法,一样能过。

#include <iostream>
#include <algorithm>
using namespace std;

const int N = 55;

int n, m;
int w[N][N], f[N * 2][N][N];

int main() {
    scanf("%d%d", &n, &m);
    for (int i = 1; i <= n; i++)
        for (int j = 1; j <= m; j++)
            scanf("%d", &w[i][j]);
    for (int k = 2; k <= n + m; k++)
        for (int i1 = 1; i1 <= n; i1++)
            for (int i2 = 1; i2 <= n; i2++) {
                int j1 = k - i1, j2 = k - i2;
                if (j1 < 1 || j1 > m || j2 < 1 || j2 > m) continue;
                int t = w[i1][j1];
                if (j1 != j2) t += w[i2][j2];
                for (int a = 0; a <= 1; a++)
                    for (int b = 0; b <= 1; b++)
                        f[k][i1][i2] = max(f[k][i1][i2], f[k - 1][i1 - a][i2 - b] + t);
            }
    printf("%d\n", f[n + m][n][n]);
    return 0;
}

6、检查是否有合法括号字符串路径

LeetCode 2267

对于一个括号序列,从左往右遍历每个字符,同时维护变量 n o w now now(初始值为 0 0 0)。遇到左括号时, n o w   + =   1 now\ +=\, 1 now +=1,遇到右括号时, n o w   − =   1 now\ -=\, 1 now =1。如果过程中 n o w now now 始终非负,且最后 n o w now now 变成 0 0 0,则是合法序列。

对于本题,需要将 n o w now now 放进 d p dp dp 状态里面,记 f [ i ] [ j ] [ k ] f[i][j][k] f[i][j][k] 表示是否存在以格子 ( i , j ) (i,j) (i,j) 结尾,且 n o w now now 值为 k k k 的括号序列。由于只能往右或者往下走,存在如下状态转移方程:
f ( i , j , k ) ← { f ( i − 1 , j , k − c )     i f ( i > 0 )  从上面转移过来 f ( i , j − 1 , k − c )     i f ( j > 0 )  从左边转移过来 f(i,j,k) \leftarrow \begin{cases} f(i-1, j, k - c) \ \ \ if(i>0) \ {从上面转移过来}\\ f(i, j - 1, k - c) \ \ \ if(j > 0) \ {从左边转移过来} \\ \end{cases} f(i,j,k){f(i1,j,kc)   if(i>0) 从上面转移过来f(i,j1,kc)   if(j>0) 从左边转移过来
其中,若 g r i d [ i ] [ j ] =   ′ ( ′ grid[i][j] = \ '(' grid[i][j]= ( ,则 c = 1 c = 1 c=1,否则 c = − 1 c = -1 c=1,并且 k = [ 0 , n + m ) k = [0, n + m) k=[0,n+m) (因为过程中 n o w now now 不能为负,且最长路径只有 n + m − 1 n + m -1 n+m1 这么长),初始值 f [ 0 ] [ 0 ] [ 1 ] = t r u e f[0][0][1] = true f[0][0][1]=true。时间复杂度为 O ( n m ( n + m ) ) O(nm(n + m)) O(nm(n+m))

class Solution {
public:
    bool hasValidPath(vector<vector<char>> &grid) {
        if (grid[0][0] == ')') return false;
        int n = grid.size(), m = grid[0].size();
        vector<vector<vector<bool>>> f;
        for (int i = 0; i < n; i++) {
            f.push_back(vector<vector<bool>>());
            for (int j = 0; j < m; j++) f.back().push_back(vector<bool>(n + m));
        }
        f[0][0][1] = true;
        for (int i = 0; i < n; i++)
            for (int j = 0; j < m; j++)
                if (i || j) {
                    int t = grid[i][j] == '(' ? 1 : -1;
                    for (int k = 0; k < n + m; k++) {
                        int kk = k - t;
                        if (kk < 0 || kk >= n + m) continue;
                        if (i) f[i][j][k] = f[i][j][k] || f[i - 1][j][kk];
                        if (j) f[i][j][k] = f[i][j][k] || f[i][j - 1][kk];
                    }
                }
        return f[n - 1][m - 1][0];
    }
};
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值