Deformable Convolutional Networks——v1 and v2,可变形卷积

本文深入解析可变形卷积网络V1及V2,阐述其如何通过学习偏移量增强CNNs对几何形变的建模能力,包括可变形卷积与可变形RoI池化,以及在V2中引入的控制输入强度标量。

V1:Deformable Convolutional Networks

V2:Deformable ConvNets v2: More Deformable, Better Results

 

V1:

卷积神经网络(CNNs)由于卷积核固定的几何结构(常见的 1x1、3x3 和 5x5 等),导致其不能够很好地建模存在几何形变(geometric transformations)的物体。本文提出了两个可以用于提高 CNNs 建模几何形变能力的模块——deformable convolution 和 deformable RoI pooling ,两种模块都是通过在目标任务中学习偏移量(offsets)来改变空间中的采样位置。

从下面的图 1 中,可以看出标准卷积(standard convolutions)和可变形卷积(deformable convolutions)之间的区别。图(a)是一个常用的 3x3 的标准卷积所对应的采样点(绿色点)。图(b)是一个可变形卷积所对应的采样点(蓝色点),其中的箭头就是本文需要学习的偏移量(offsets),根据这些偏移量,就可以把标准卷积中对应的采样点( 图(a)中绿色 )移动到可变形卷积中的不规则采样点处( 图(b)中蓝色 )。图(c)和图(d)是图(b)的特殊情况,表明了可变形卷积囊括了长宽比、尺度变换和旋转变换。

一、Deformable Convolution(可变形卷积)

在标准卷积(standard convolution)中,对于输出特征图 y 上的每一个点 y(p_{0}),它的计算如下:

其中:w(p_{n}) 为每一个采样点所对应的权重(也就是卷积核里的权重参数),对于一个常见的 3x3 的卷积核,R 为:

 即 \sum_{p(n)\in R}(p_{0}+p_{n}) 是以

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值