V1:Deformable Convolutional Networks
V2:Deformable ConvNets v2: More Deformable, Better Results
V1:
卷积神经网络(CNNs)由于卷积核固定的几何结构(常见的 1x1、3x3 和 5x5 等),导致其不能够很好地建模存在几何形变(geometric transformations)的物体。本文提出了两个可以用于提高 CNNs 建模几何形变能力的模块——deformable convolution 和 deformable RoI pooling ,两种模块都是通过在目标任务中学习偏移量(offsets)来改变空间中的采样位置。
从下面的图 1 中,可以看出标准卷积(standard convolutions)和可变形卷积(deformable convolutions)之间的区别。图(a)是一个常用的 3x3 的标准卷积所对应的采样点(绿色点)。图(b)是一个可变形卷积所对应的采样点(蓝色点),其中的箭头就是本文需要学习的偏移量(offsets),根据这些偏移量,就可以把标准卷积中对应的采样点( 图(a)中绿色 )移动到可变形卷积中的不规则采样点处( 图(b)中蓝色 )。图(c)和图(d)是图(b)的特殊情况,表明了可变形卷积囊括了长宽比、尺度变换和旋转变换。

一、Deformable Convolution(可变形卷积)
在标准卷积(standard convolution)中,对于输出特征图 上的每一个点
,它的计算如下:

其中: 为每一个采样点所对应的权重(也就是卷积核里的权重参数),对于一个常见的 3x3 的卷积核,
为:
![]()
即 是以

本文深入解析可变形卷积网络V1及V2,阐述其如何通过学习偏移量增强CNNs对几何形变的建模能力,包括可变形卷积与可变形RoI池化,以及在V2中引入的控制输入强度标量。
最低0.47元/天 解锁文章
1万+

被折叠的 条评论
为什么被折叠?



