滤波器:抑制或最小化某些频率的波或振荡的装置或材料
频率:自变量单位变化期间,一个周期函数重复相同值序列的次数
--韦伯斯特新学院词典
傅里叶变换基础
具有周期T的周期函数
f
(
t
)
f(t)
f(t)拆解成正余弦函数和,即傅里叶级数
f
(
t
)
=
∑
n
=
−
∞
∞
c
n
e
j
2
π
n
T
t
c
n
=
1
T
∫
−
T
2
T
2
f
(
t
)
e
−
j
2
π
n
T
t
,
n
=
0
,
±
1
,
±
2
,
.
.
.
f(t)=\sum\limits_{n=-\infty}^{\infty}c_ne^{j\frac{2\pi n}{T}t}\\c_n=\frac{1}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}}f(t)e^{-j\frac{2\pi n}{T}t},n=0,\pm1,\pm2,...
f(t)=n=−∞∑∞cnejT2πntcn=T1∫−2T2Tf(t)e−jT2πnt,n=0,±1,±2,...
(广义上的)单位冲击函数
δ
(
t
)
=
{
∞
,
t
=
0
0
,
t
!
=
0
,
∫
−
∞
∞
δ
(
t
)
d
t
=
1
\delta(t)=\begin{cases}\infty,&t=0\\0,&t != 0\end{cases},\int_{-\infty}^{\infty}\delta(t)dt=1
δ(t)={∞,0,t=0t!=0,∫−∞∞δ(t)dt=1具有取样特性
∫
−
∞
∞
f
(
t
)
δ
(
t
−
t
0
)
d
t
=
f
(
t
0
)
\int_{-\infty}^{\infty}f(t)\delta(t-t_0)dt=f(t_0)
∫−∞∞f(t)δ(t−t0)dt=f(t0)离散冲击串可以用来采样:
S
Δ
T
(
t
)
=
∑
n
=
−
∞
∞
δ
(
t
−
n
Δ
T
)
S_{\Delta T}(t)=\sum\limits_{n=-\infty}^\infty\delta(t-n\Delta T)
SΔT(t)=n=−∞∑∞δ(t−nΔT)举例窗函数:
F
(
ω
)
=
∫
−
∞
∞
f
(
t
)
e
−
j
ω
t
d
t
=
∫
−
W
2
W
2
A
e
−
j
ω
t
d
t
=
A
−
j
ω
[
e
−
j
ω
t
]
−
W
2
W
2
=
A
j
ω
[
e
j
ω
W
2
−
e
−
j
ω
W
2
]
=
2
A
ω
s
i
n
(
ω
W
2
)
=
A
W
s
i
n
(
ω
W
2
)
ω
W
2
F(\omega)=\int_{-\infty}^{\infty}f(t)e^{-j\omega t}dt=\int_{-\frac{W}{2}}^{\frac{W}{2}}Ae^{-j\omega t}dt\\=\frac{A}{-j\omega}[e^{-j\omega t}]^{\frac{W}{2}}_{-\frac{W}{2}}=\frac{A}{j\omega}[e^{j\omega \frac{W}{2}}-e^{-j\omega \frac{W}{2}}]\\=\frac{2A}{\omega}sin(\frac{\omega W}{2})=AW\frac{sin(\frac{\omega W}{2})}{\frac{\omega W}{2}}
F(ω)=∫−∞∞f(t)e−jωtdt=∫−2W2WAe−jωtdt=−jωA[e−jωt]−2W2W=jωA[ejω2W−e−jω2W]=ω2Asin(2ωW)=AW2ωWsin(2ωW)