数字图像处理(第三版,Rafeal C. Gonzalez, Richard E. Woods)--傅里叶变换(频率域滤波)

滤波器:抑制或最小化某些频率的波或振荡的装置或材料
频率:自变量单位变化期间,一个周期函数重复相同值序列的次数
                                                                                              --韦伯斯特新学院词典

傅里叶变换基础

具有周期T的周期函数 f ( t ) f(t) f(t)拆解成正余弦函数和,即傅里叶级数 f ( t ) = ∑ n = − ∞ ∞ c n e j 2 π n T t c n = 1 T ∫ − T 2 T 2 f ( t ) e − j 2 π n T t , n = 0 , ± 1 , ± 2 , . . . f(t)=\sum\limits_{n=-\infty}^{\infty}c_ne^{j\frac{2\pi n}{T}t}\\c_n=\frac{1}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}}f(t)e^{-j\frac{2\pi n}{T}t},n=0,\pm1,\pm2,... f(t)=n=cnejT2πntcn=T12T2Tf(t)ejT2πntn=0,±1,±2,...
(广义上的)单位冲击函数 δ ( t ) = { ∞ , t = 0 0 , t ! = 0 , ∫ − ∞ ∞ δ ( t ) d t = 1 \delta(t)=\begin{cases}\infty,&t=0\\0,&t != 0\end{cases},\int_{-\infty}^{\infty}\delta(t)dt=1 δ(t)={,0,t=0t!=0δ(t)dt=1具有取样特性 ∫ − ∞ ∞ f ( t ) δ ( t − t 0 ) d t = f ( t 0 ) \int_{-\infty}^{\infty}f(t)\delta(t-t_0)dt=f(t_0) f(t)δ(tt0)dt=f(t0)离散冲击串可以用来采样: S Δ T ( t ) = ∑ n = − ∞ ∞ δ ( t − n Δ T ) S_{\Delta T}(t)=\sum\limits_{n=-\infty}^\infty\delta(t-n\Delta T) SΔT(t)=n=δ(tnΔT)举例窗函数: F ( ω ) = ∫ − ∞ ∞ f ( t ) e − j ω t d t = ∫ − W 2 W 2 A e − j ω t d t = A − j ω [ e − j ω t ] − W 2 W 2 = A j ω [ e j ω W 2 − e − j ω W 2 ] = 2 A ω s i n ( ω W 2 ) = A W s i n ( ω W 2 ) ω W 2 F(\omega)=\int_{-\infty}^{\infty}f(t)e^{-j\omega t}dt=\int_{-\frac{W}{2}}^{\frac{W}{2}}Ae^{-j\omega t}dt\\=\frac{A}{-j\omega}[e^{-j\omega t}]^{\frac{W}{2}}_{-\frac{W}{2}}=\frac{A}{j\omega}[e^{j\omega \frac{W}{2}}-e^{-j\omega \frac{W}{2}}]\\=\frac{2A}{\omega}sin(\frac{\omega W}{2})=AW\frac{sin(\frac{\omega W}{2})}{\frac{\omega W}{2}} F(ω)=f(t)ejωtdt=2W2WAejωtdt=jωA[ejωt]2W2W=jωA[ejω2Wejω2W]=ω2Asin(2ωW)=AW2ωWsin(2ωW)
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值