【强化学习】Prioritized Experience Replay(2016)

本文探讨了在强化学习中,优先体验回放(Prioritized Experience Replay)如何通过TD误差来选择重要过渡,以提高学习效率。这种方法解决了数据相关性和罕见经验的问题,但可能引入偏倚。通过重要采样权重修正,可以在优化样本的同时保持训练稳定性。文章还讨论了随机优化策略和逐步调整偏倚参数的必要性。
摘要由CSDN通过智能技术生成

RL最简单的形式是,在单独的更新后就立刻丢弃掉到来的数据。伴随而来的有2个问题:

  1. 强相关的更新打破了随机梯度下降算法的假定
  2. 一些少见的experience可能会在之后有用

经验回放解决了2个问题:

  1. 通过融合一些近期的经验有可能打破相关性
  2. 一些少见的经验会被重复用到

这篇文章主要研究与所有的transition被均匀回放相比,哪种transition被回放可以是的经验回放更加有效。之前有研究表示,一些转换并不是立刻对agent有效的,而是在agent能力增加后才变得有效。经验回放将agent从经历确定顺序的经验中解放出来,优先回放则是将agent从经历的转换频率相同中解放出来。

这种优先性可能会导致多样性的损失,这个可以用随机优化来解决。
也会引入bias(?),这个可以用important sampling来修正。

TD error提供了一个衡量有限性的方式,本文的方法是用了针对model-free RL的一个相似优先算法(?)

TD error已经被用作一个优先机制来确定该关注的地方,例如选择探索地点的时间或者要选择的是什么特征。

监督学习中,有很多处理数据集不均衡的方法,例如re-sampling,under-sampling和over-sampling等(?)。最近有篇论文将re-sampling引入到deep RL的experience replay中,它将经验分为两个部分,一个为了正奖励,一个为了负奖励,如何从两部分中分别选择固定部分去回放。这个办法仅仅适用于存在正负经验的情况。

PRIORITIZED REPLAY<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值