RL最简单的形式是,在单独的更新后就立刻丢弃掉到来的数据。伴随而来的有2个问题:
- 强相关的更新打破了随机梯度下降算法的假定
- 一些少见的experience可能会在之后有用
经验回放解决了2个问题:
- 通过融合一些近期的经验有可能打破相关性
- 一些少见的经验会被重复用到
这篇文章主要研究与所有的transition被均匀回放相比,哪种transition被回放可以是的经验回放更加有效。之前有研究表示,一些转换并不是立刻对agent有效的,而是在agent能力增加后才变得有效。经验回放将agent从经历确定顺序的经验中解放出来,优先回放则是将agent从经历的转换频率相同中解放出来。
这种优先性可能会导致多样性的损失,这个可以用随机优化来解决。
也会引入bias(?),这个可以用important sampling来修正。
TD error提供了一个衡量有限性的方式,本文的方法是用了针对model-free RL的一个相似优先算法(?)
TD error已经被用作一个优先机制来确定该关注的地方,例如选择探索地点的时间或者要选择的是什么特征。
监督学习中,有很多处理数据集不均衡的方法,例如re-sampling,under-sampling和over-sampling等(?)。最近有篇论文将re-sampling引入到deep RL的experience replay中,它将经验分为两个部分,一个为了正奖励,一个为了负奖励,如何从两部分中分别选择固定部分去回放。这个办法仅仅适用于存在正负经验的情况。
PRIORITIZED REPLAY<