关于ai-benchmark(python包)的评分机制

本文介绍了ai-benchmark的评价模型,该模型基于19个典型神经网络的训练和推理时延进行打分。评分函数计算推理和训练的相对速度的几何平均数,并乘以基准分数得出最终得分。相对速度是通过基准时间和设备测试时间的比例确定,每个测试都有预设的基准时间。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

关于AI算力的评价问题,本文基于源码对ai-benchmark的评分机制做了简单介绍
该评价模型采用测试训练、推理时延的方式(包含19个典型的NN),对设备进行了打分。

参见网址

评分结果
主要评分函数:
评分函数
该评分函数主要做了两件事情,第一是计算了推理、训练的相对速度的几何平均数,第二是用平均速度 * 一个基准分得出最终分数。

要点:相对速度 : 是基于给定的基准时间 / 该设备测试时间 得到相对速度
相对速度计算
基准时间: 对于每一种测试,该评价模型都给出了一个时间基准。
在这里插入图片描述
关于评价方法,本文解读至此。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值