机器学习笔记之概率图模型(八)信念传播(Belief Propagation,BP)(基于树结构)

引言

上一节介绍了精确推断中的变量消去法,本节将针对变量消去法的弊端,介绍信念传播

回顾:变量消去法及弊端

变量消去法(Variable Elimination,VE)是概率图精确推断的基础思想,其本质是通过 乘法对加法的分配律 思想进行简化运算。
已知一个贝叶斯网络表示如下:
贝叶斯网络-示例
上述节点的联合概率分布 P ( i 1 , i 2 , i 3 , i 4 , i 5 ) \mathcal P(i_1,i_2,i_3,i_4,i_5) P(i1,i2,i3,i4,i5)表示如下:
P ( i 1 , i 2 , i 3 , i 4 , i 5 ) = ∏ k = 1 5 P ( i k ∣ i p a ( k ) ) = P ( i 1 ) ⋅ P ( i 2 ∣ i 1 ) ⋅ P ( i 3 ∣ i 2 ) ⋅ P ( i 4 ∣ i 3 ) ⋅ P ( i 5 ∣ i 4 ) \begin{aligned} \mathcal P(i_1,i_2,i_3,i_4,i_5) & = \prod_{k=1}^5 \mathcal P(i_k \mid i_{pa(k)}) \\ & = \mathcal P(i_1) \cdot \mathcal P(i_2 \mid i_1) \cdot \mathcal P(i_3 \mid i_2) \cdot \mathcal P(i_4 \mid i_3) \cdot \mathcal P(i_5 \mid i_4) \end{aligned} P(i1,i2,i3,i4,i5)=k=15P(ikipa(k))=P(i1)P(i2i1)P(i3i2)P(i4i3)P(i5i4)
i 3 , i 5 i_3,i_5 i3,i5两个变量结点示例:

  • 变量结点 i 5 i_5 i5的边缘概率分布表示如下:
    其中 P i 1 ( i 2 ) \mathcal P_{i_1}(i_2) Pi1(i2)表示通过 i 1 i_1 i1积分从而得到 i 2 i_2 i2的边缘概率结果。
    P ( i 5 ) = ∑ i 1 , i 2 , i 3 , i 4 P ( i 1 , i 2 , i 3 , i 4 , i 5 ) = ∑ i 1 , i 2 , i 3 , i 4 P ( i 1 ) ⋅ P ( i 2 ∣ i 1 ) ⋅ P ( i 3 ∣ i 2 ) ⋅ P ( i 4 ∣ i 3 ) ⋅ P ( i 5 ∣ i 4 ) = ∑ i 4 P ( i 5 ∣ i 4 ) ⋅ ∑ i 3 P ( i 4 ∣ i 3 ) ⋅ ∑ i 2 P ( i 3 ∣ i 2 ) ⋅ ∑ i 1 P ( i 2 ∣ i 1 ) ⋅ P ( i 1 ) = ∑ i 4 P ( i 5 ∣ i 4 ) ⋅ ∑ i 3 P ( i 4 ∣ i 3 ) ⋅ ∑ i 2 P ( i 3 ∣ i 2 ) ⋅ P i 1 ( i 2 ) = ⋯ = P i 4 ( i 5 ) \begin{aligned} \mathcal P(i_5) & = \sum_{i_1,i_2,i_3,i_4} \mathcal P(i_1,i_2,i_3,i_4,i_5) \\ & = \sum_{i_1,i_2,i_3,i_4} \mathcal P(i_1) \cdot \mathcal P(i_2 \mid i_1) \cdot \mathcal P(i_3 \mid i_2) \cdot \mathcal P(i_4 \mid i_3) \cdot \mathcal P(i_5 \mid i_4) \\ & = \sum_{i_4} \mathcal P(i_5 \mid i_4) \cdot \sum_{i_3} \mathcal P(i_4 \mid i_3) \cdot \sum_{i_2} \mathcal P(i_3 \mid i_2) \cdot \sum_{i_1} \mathcal P(i_2 \mid i_1) \cdot \mathcal P(i_1) \\ & = \sum_{i_4} \mathcal P(i_5 \mid i_4) \cdot \sum_{i_3} \mathcal P(i_4 \mid i_3) \cdot \sum_{i_2} \mathcal P(i_3 \mid i_2) \cdot \mathcal P_{i_1}(i_2) \\ & = \cdots \\ & = \mathcal P_{i_4}(i_5) \end{aligned} P(i5)=i1,i2,i3,i4P(i1,i2,i3,i4,i5)=i1,i2,i3,i4P(i1)P(i2i1)P(i3i2)P(i4i3)P(i5i4)=i4P(i5i4)i3P(i4i3)i2P(i3i2)i1P(i2i1)P(i1)=i4P(i5i4)i3P(i4i3)i2P(i3i2)Pi1(i2)==Pi4(i5)
    贝叶斯网络中, i 5 i_5 i5节点的计算顺序表示如下(蓝色箭头):
    i5节点的计算顺序
    这个操作和隐马尔可夫模型中的前向算法计算顺序相同,均是 从初始时刻出发,向目标时刻方向计算的过程
    不仅计算顺序相同,并且计算的操作也是非常近似的。即每一次迭代过程都需要对状态变量进行积分,从而转移到下一状态
    HMM模型前向算法(Forward Algorithm)迭代过程表示如下:
    α t + 1 ( j ) = ∑ i t b j ( o t + 1 ) ⋅ a i j ⋅ α t ( i ) \alpha_{t+1}(j) = \sum_{i_t} b_j(o_{t+1}) \cdot a_{ij} \cdot \alpha_t(i) αt+1(j)=itbj(ot+1)aijαt(i)
    其中 α t ( i ) \alpha_t(i) αt(i)表示 t t t时刻之前所有观测变量 o 1 , … , o t o_1,\dots,o_t o1,,ot t t t时刻状态变量 i t i_t it的联合概率分布 a i j a_{ij} aij表示状态转移矩阵 A \mathcal A A的对应元素; b j ( o t + 1 ) b_j(o_{t+1}) bj(ot+1)表示发射矩阵 B \mathcal B B的对应元素;
    α t ( i ) = P ( o 1 , ⋯   , o t , i t = q i ∣ λ ) λ = ( π , A , B ) \alpha_t(i) = \mathcal P(o_1,\cdots,o_t,i_t = q_i \mid \lambda) \quad \lambda = (\pi,\mathcal A,\mathcal B) αt(i)=P(o1,,ot,it

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

静静的喝酒

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值