机器学习笔记之优化算法(五)线搜索方法(步长角度;非精确搜索;Armijo Condition)

引言

上一节介绍了线搜索方法使用非精确搜索近似求解最优步长的过程中,讨论了 f ( x k + 1 ) < f ( x k ) f(x_{k+1}) < f(x_k) f(xk+1)<f(xk) { f ( x k ) } k = 0 ∞ ⇒ f ∗ \{f(x_k)\}_{k=0}^{\infty} \Rightarrow f^* { f(xk)}k=0f之间的条件关系。本节以该条件关系为引,介绍 Armijo Condition \text{Armijo Condition} Armijo Condition

回顾:

关于 f ( x k + 1 ) = ϕ ( α ) f(x_{k+1}) = \phi(\alpha) f(xk+1)=ϕ(α)的一些特性

线搜索方法——步长角度(精确搜索)中介绍过,由于目标函数 f ( ⋅ ) f(\cdot) f()未知,导致我们没有办法得到 ϕ ( α ) = f ( x k + 1 ) \phi(\alpha) = f(x_{k+1}) ϕ(α)=f(xk+1)精确函数,但并不妨碍我们了解一些关于 ϕ ( α ) \phi(\alpha) ϕ(α)的特性:

  • 由于步长变量 α \alpha α具有物理意义,因而 α \alpha α存在下界 0 0 0,从而 ϕ ( 0 ) = f ( x k + 0 ⋅ P k ) = f ( x k ) \phi(0) = f(x_k + 0 \cdot \mathcal P_k) = f(x_k) ϕ(0)=f(xk+0Pk)=f(xk)
  • ϕ ( α ) \phi(\alpha) ϕ(α) α = 0 \alpha=0 α=0处的斜率 ∂ ϕ ( α ) ∂ α ∣ α = 0 \begin{aligned}\frac{\partial \phi(\alpha)}{\partial \alpha}|_{\alpha=0}\end{aligned} αϕ(α)α=0可表示成如下形式:
    ∂ ϕ ( α ) ∂ α ∣ α = 0 = ϕ ′ ( 0 ) = [ ∇ f ( x k + 0 ⋅ P k ) ] T ⋅ P k = [ ∇ f ( x k ) ] T ⋅ P k \begin{aligned} \frac{\partial \phi(\alpha)}{\partial \alpha}|_{\alpha=0} & = \phi'(0) \\ & = \left[\nabla f(x_k + 0 \cdot \mathcal P_k)\right]^T \cdot \mathcal P_k \\ & = \left[\nabla f(x_k)\right]^T \cdot \mathcal P_k \end{aligned} αϕ(α)α=0=ϕ(0)=[f(xk+0Pk)]TPk=[f(xk)]TPk
    其中 P k \mathcal P_k
  • 1
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

静静的喝酒

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值