语义分割之deeplab系列(一)
一、语义分割
1、何为语义分割
在计算机视觉领域,目前神经网络的应用主要有图像识别,目标定位与检测,语义分割。
图像识别
根据各自在图像信息中所反映的不同特征,把不同类别的目标区分开来的图像处理方法。通俗来讲,图像识别就是告诉你图像是什么或者图像是否包含某个物体、具有某些特征,比如图(a)。
目标定位与检测
定位一般是指一张图有一个类别,有单个物体需要去定位。通俗来讲,目标定位与检测告诉你图像中目标在哪里。在图像识别的基础上,需要将目标物体用框框住,并注明类别,比如图(b)。
语义分割
从字面意思上理解就是让计算机根据图像的语义来进行分割,基本要求如下:
- 对图像做密集的分割任务,分割每个像素到指定类别上
- 将图像分割成几个有意义的目标
- 给对象分配指定类型标签
比如图(c)。
实例分割
机器自动从图像中用目标检测方法框出不同实例,再用语义分割方法在不同实例区域内进行逐像素标记。
2、应用领域
目前语义分割的应用领域主要有:地理信息系统、无人车驾驶、医疗影像分析、机器人等领域。
-
地理信息系统
-
无人车驾驶
-
医疗影像分析
-
机器人