语义分割之deeplab系列(一)

1 篇文章 0 订阅
1 篇文章 0 订阅

一、语义分割

1、何为语义分割

在计算机视觉领域,目前神经网络的应用主要有图像识别,目标定位与检测,语义分割。
11

图像识别

根据各自在图像信息中所反映的不同特征,把不同类别的目标区分开来的图像处理方法。通俗来讲,图像识别就是告诉你图像是什么或者图像是否包含某个物体、具有某些特征,比如图(a)。

目标定位与检测

定位一般是指一张图有一个类别,有单个物体需要去定位。通俗来讲,目标定位与检测告诉你图像中目标在哪里。在图像识别的基础上,需要将目标物体用框框住,并注明类别,比如图(b)。

语义分割

从字面意思上理解就是让计算机根据图像的语义来进行分割,基本要求如下:

  • 对图像做密集的分割任务,分割每个像素到指定类别上
  • 将图像分割成几个有意义的目标
  • 给对象分配指定类型标签

比如图(c)。

实例分割

机器自动从图像中用目标检测方法框出不同实例,再用语义分割方法在不同实例区域内进行逐像素标记。

2、应用领域

目前语义分割的应用领域主要有:地理信息系统、无人车驾驶、医疗影像分析、机器人等领域。

  • 地理信息系统

  • 无人车驾驶

  • 医疗影像分析

  • 机器人

3、面临的挑战

二、Deeplab系列

1、概述

2、三级标题

3、四级标题

三、

二级标题

四、参考文献

二级标题

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值