【文献阅读】2020-SIGIR-Group-Aware Long- and Short-Term Graph Representation Learning for Sequential Group

本文提出了一种新的推荐系统问题——顺序组推荐,结合了序列推荐和群组推荐,旨在利用用户在历史和当前时间框架中的顺序交互来预测群组的未来偏好。为了解决这一问题,GLS-GRL模型被开发出来,它通过构建组感知的长期和短期图来捕获用户表示,并利用图神经网络学习动态的用户和组表示。实验表明,GLS-GRL在性能上优于单纯的序列推荐和群组推荐方法,验证了其有效性和关键组件的设计。
摘要由CSDN通过智能技术生成

说明

1.原文链接

2.本人及翻译软件的翻译水平有限,粗读即可,精读请看原文。

标题

1.题目:面向序列组推荐的群感知长、短期图表示学习
    Group-Aware Long- and Short-Term Graph Representation Learning for Sequential Group Recommendation
2.作者:
  华东师范大学、微信搜索应用部门、乔治亚理工学院
在这里插入图片描述

摘要

  顺序推荐和群推荐是推荐系统中的两个重要分支。虽然我们已经对这两个分支进行了大量独立的研究,但我们提出了新的序列群推荐问题,将它们结合在一起,该问题能够建模群的动态表示,是实现更好的群推荐性能的关键。该问题的主要挑战是如何有效地学习基于组成员在过去时间段内连续的用户-项交互的动态组表示。为了解决这个问题,我们设计了一种组感知的长、短期图表示学习方法,即GLS-GRL,用于顺序组推荐。具体地说,对于一个目标群体,我们构造一个群体感知的长期图来捕捉整个历史中的用户项交互和项目-项目共现,以及一个群体感知的短期图来包含关于当前时间框架的相同信息。基于这些图,GLS-GRL进行图表示学习,获得长期和短期用户表示,然后自适应地融合它们,获得集成的用户表示。最后,通过约束用户交互注意机制来编码组成员之间的关联,从而得到组表示。综合实验表明,GLS-GRL的性能优于序贯推荐和群推荐两种强替代方案,验证了GLS-GRL核心组件的有效性。

1 介绍

  现代推荐系统在塑造用户-物品的交互方式中起着举足轻重的作用。在这个信息爆炸的时代,这一点尤为重要。在这个时代,用户普遍面临着信息超载的问题(例如,亚马逊上有数百万的产品,Twitter上有大规模的流媒体用户生成内容)。因此,大量的研究致力于为不同的推荐问题设置开发有效的推荐模型和算法。顺序推荐[17,33]是这方面的一个研究热点,其目的是预测目标用户愿意与之交互的下一个对象。它提出了一个主要的挑战,即学习基于顺序用户项交互的动态用户偏好表示。递归神经网络(RNNs)[8],卷积神经网络(CNNs)[19],强大的注意力机制[10],以及最近的图神经网络(GNNs)[26]已被应用于这个问题。
  从另一个角度来看,一些研究调查的是将推荐的产品提供给目标用户组的情况,而不是按照一般的顺序推荐给单个用户。这个问题称为分组推荐[15]。用户群的形式在在线社交媒体中非常普遍,如meetup1,用户被组织成小组,参与一些线下活动,facebook2,小组是兴趣俱乐部,微信,用户可以轻松创建小组聊天。除了使用像平均群体成员[2]的偏好分数这样的经验策略外,最近关于群体推荐的研究集中于如何自动量化个体偏好在形成群体层次偏好中的相对重要性。两个代表性的技术分支是概率模型[13]和基于注意力的方法[3]。然而,研究到目前为止将问题表述为静态推荐,忽略了团队成员行为的顺序性。
  在本文中,我们提出了一个新的问题,即顺序群推荐(SGR),它位于顺序推荐和群推荐的交叉点。如图1所示,此问题旨在利用目标组成员在过去时间框架中的顺序项交互,以预测哪些项将在下一个时间框架中从目标组成员获得更多交互。由于社交平台上可能会不时出现由现有用户组成的新群组,因此这个问题需要同时向现有群组和新群组推荐物品。与之前的群组推荐问题设置相比,顺序群组推荐具有很强的工具性,能够建模由顺序推荐激发的群组动态表示,对于提高群组推荐的性能很有希望。值得注意的是,虽然这些研究[14,27]涉及了顺序推荐和分组的概念,但它们与我们的研究有着根本的不同,因为:(1)前一项研究为会话推荐量身定做,其方法完全是实证的,没有模型学习过程;(2)后者实际上是利用群体偏好来促进对个体用户的顺序推荐,以克服稀疏性问题。
在这里插入图片描述

  为了解决这个问题,一个基本的挑战是如何有效地学习基于组成员在过去时间段内连续的用户-项交互的动态组表示。实际上,组表示是由组成员的动态表示来反映的,这种动态表示既适用于现有组,也适用于新组。因此,用户表示是必不可少的,它弥补了特定用户-项交互和组表示之间的差距。然后将整体的基本挑战分解为具体的挑战:
  -如何利用组成员关系和顺序的用户项交互来了解用户表示?
  -如何利用获得的用户表示来表示组偏好?
  为了更好地解决上述两个问题,我们提出了群体感知长、短期图表示学习(Group-aware Long- and - short Graph Representation Learning)模型。该方法使组成员关系能够影响用户表示的学习和基于所获得的用户表示的组表示的实现,这一点受到了人们的欢迎。具体地说,在每个时间框架中,我们首先构建感知组的长期和短期图,这两个图共享属于同一目标组的所有用户。长期图包含整个历史中的用户-项目交互和项目-项目共现,而短期图只包含关于当前时间框架的信息。在这两个图的基础上,GLS-GRL对这两个图进行图表示学习,分别学习用户的长表示和短期表示。通过一个简单的闸门机制来融合这两种类型的表示,以获得集成的用户表示。就这样,第一个挑战得到了解决。对于第二个挑战,GLS-GRL进一步开发了一种受约束的用户交互注意力,这种注意力是由亚注意力网络[20]激发的。它通过表示一个用户w.r.t来编码组成员之间的相关性,即被选择的其他组成员的表示,这些成员需要至少有一个共同交互的项目。组表示最终通过集成用户表示来实现。
  综上所述,主要贡献如下:

  • 我们提出了一个新的问题,即顺序群体推荐,它需要对群体表示的顺序动力学进行建模,而这在目前的群体推荐研究中被忽视了。
  • 我们开发了GLS-GRL模型,创新之处是通过相应的组感知长、短期图来学习长、短期用户表示,以及组表示学习和用户表示学习的耦合。
  • 我们在两个真实数据集上进行了全面的实验,证明了GLS-GRL与强替代方案相比具有更好的性能,验证了模型的一些关键设计。

2 相关研究

  在本节中,我们从顺序推荐、群体推荐和GNNs推荐三个方面回顾了相关研究。

2.1 序列推荐

  与一般的推荐任务设置不同,顺序推荐的特点在于解决用户行为的顺序特性,并预测用户在不久的将来(比如下一次)会喜欢什么。早期关于顺序推荐的研究依赖于一阶马尔科夫假设,即下一个交互只依赖于同一用户当前的交互,包括基于过渡计数的方法[5]和潜在因子模型[17]。受深度学习广泛成功的启发,近年来RNNs、CNNs、attention mechanism、GNNs等应用于顺序推荐。具体来说,开创性的研究[8]通过将相互作用的项目视为单词来利用该领域的RNNs。通过将项序列映射到嵌入矩阵,验证了用于图像处理的基础设施CNNs[19]在这方面在一定程度上的有效性。量化不同的重要性过去的相互作用下的预测,采用注意机制[10 - 12,18]。从另一个角度来看,GNNs将交互建模为一个图,这将在2.3节中讨论。
  大多数现有的顺序推荐方法都是针对单个用户的。一个简单的想法是直接利用这些方法来学习用户表示,然后通过一些融合方法来聚合它们。但是,它不能利用组成员关系来获得用户表示,这在第一个挑战中得到了强调。值得注意的是,我们不能将组id映射到嵌入来增强输入表示,因为应该处理在训练阶段没有出现的新组。

2.2 群组推荐

  组推荐需要融合用户组中所有成员的个人首选项。为此,本文首先采用了一些实证的、简单的策略。O 'Connor等人[15]使用最不满意用户的偏好来表示群体层次的偏好(又称最不痛苦策略)。[2]比较了包括简单平均聚合策略在内的几种偏好聚合策略,发现:(1)这些策略的结果相似,(2)群体推荐比个体推荐难。然而,这些策略都有点太过经验主义,没有一个学习过程来指导聚合。
  为了自动测量个体的影响,我们提出了概率模型[6,13,28,31]来描述产品推荐作为一个生成过程。这些模型共享的基本过程是,首先为目标组(或同一组中的成员)选择一个用户,然后根据该用户和关联的隐藏主题生成项。但是,它们有一个限制,即用户对主题或项的分布(也被视为用户表示)独立于组[20]。最近,基于深度表示学习的模型被提出[3,20,29]。它们都利用注意机制[1]来计算个体影响权重w.r.t.特定群体,从而有效融合用户表征。它被证明比概率模型的性能更好。
  以上的群组推荐方法都没有考虑用户行为的顺序性,而用户行为的顺序性构成了群组的动态性。这促使人们提出了顺序组推荐和开发针对该问题的定制模型。值得注意的是,一些研究[32]将群体推荐制定为向特定用户推荐加入的群体,而另一些研究[9,27]利用群体信息提升个体的推荐性能,两者在概念上都与所研究的问题不同。

2.3 用于推荐的GNNs

  图神经网络将用户-物品的交互建模为图,由于能够将高阶关联编码到低维的用户和物品表示中,因此受到欢迎。提出了PinSage[30],用于通过图的卷积层传播itemitem图上的表示。NGCF[24]为用户-项目二部图建模,以学习集体用户行为。RippleNet[22]利用知识图将交互项显示的用户偏好传播给可能被推荐的候选项。这些方法是为一般的推荐设置量身定做的,不解决用户行为的顺序。
  在顺序推荐领域,最新的研究[16,23,25,26]将目标用户的当前会话建模为项-项图,或将不同用户的多个会话转换为全局共享的项-项图。下一个项目推荐是通过计算候选项目之间的相似性和整个会话的表示来实现的。以上研究通过捕捉用户的短期偏好对个体进行推荐。
  相比之下,我们的目标是获取用户对顺序组推荐的长期和短期偏好,即预测目标组在下一个时间段会更喜欢哪些项目。我们还通过构建可感知组的长期和短期图继承了基于gnn的建模思想。这使得用户表示学习可以由组成员关系和顺序的用户项交互来指导。

3 问题定义

  我们利用 U = { u 1 , u 2 , … , u ∣ U ∣ } U = \{u_1,u_2,\dots,u_{|U|}\} U={ u1,u2,,uU} V = { v 1 , v 2 , … , v ∣ V ∣ } V = \{v_1,v_2,\dots,v_{|V|}\} V={ v1,v2,,vV}表示推荐系统的两个最基本的元素,分别为用户集和项目集。用户组 g g g关联到一个用户组 M g ⊆ U M_g\subseteq U MgU,这可以是一个现有的组或一个新兴群体。因此,组的数量可能会随时间而改变。为每个用户 u ∈ U u \in U uU,我们表示用户的长期历史行为 H u l = ( v 0 l , v 1 l , v 2 l , …   ) H_u^l=(v_0^l,v_1^l,v_2^l,\dots) Hul=(v0l,v1l,v2l,)对应于整个历史,历史和短期行为 H u s = ( v 0 s , v 1 s , v 2 s , …   ) H_u^s=(v_0^s,v_1^s,v_2^s,\dots) Hus=(v0s,v1s,v2s,)对应于当前时间帧푇。我们进一步利用 Ω ( H u l ) ( Ω ( H u l ) ⊆ V ) Ω(H_u^l)(Ω(H_u^l) \subseteq V) Ω(Hul)(Ω(Hul)V) Ω ( H u s ) ( Ω ( H u s ) ⊆ V ) Ω(H_u^s)(Ω(H_u^s) \subseteq V) Ω(Hus)(Ω(Hus)V)分别表示历史行为中包含的项目集.
  基于这些符号,我们首先定义组感知长期图和组感知短期图如下:
  定义1(群组感知的长期图). G g l = { V g l , E

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

lechuan_dafo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值