【教程】人脸表情识别-目标检测-图像分类

该教程介绍了人脸表情识别的过程,包括使用目标检测定位人脸,接着对检测到的人脸应用卷积网络模型进行表情分类。通过这种方法,实现了从图像中有效识别不同表情的功能。
摘要由CSDN通过智能技术生成

这个专栏更新各种AI,以及各种有趣的教程,有兴趣的小伙伴可以订阅一下。

直接上图,本期是检测人脸表情。

原理其实很简单,就是通过目标检测将人脸检测出来,

然后将检测出来的人脸用卷积网络训练的模型进行表情分类,达到表情识别的功能。

class LeNet(nn.Module):
    def __init__(self, num_classes=num_classes):
        super(LeNet, self).__init__()
        self.conv1 = nn.Sequential(  # input_size=(1*64*64)
            nn.Conv2d(3, 6, 5, 1, 2),  # padding=2
            nn.ReLU(),  # input_size=(6*64*64)
            nn.MaxPool2d(kernel_size=2, stride=2),  # output_size=(6*32*32)
        )
        self.conv2 = nn.Sequential(
            nn.Conv2d(6, 16, 5),
         
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

bug生成中

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值