《The Bitter Lesson》中文

苦涩的教训

里奇·萨顿

三月 13, 2019

        从70年的人工智能研究中可以读到的最大教训是 利用计算的一般方法最终是最 有效,而且幅度很大。造成这种情况的最终原因是 摩尔定律,或者更确切地说,它的推广呈指数级增长 降低单位计算成本。大多数人工智能研究都是 就好像代理可用的计算是恒定的一样进行 (在这种情况下,利用人类知识将是唯一的方法之一 以提高性能),但是,在比典型时间稍长的时间内 研究项目,大量计算不可避免地成为 可用。寻求改进,以改变 从短期来看,研究人员试图利用他们对人类的知识 领域,但从长远来看,唯一重要的是 利用计算。这两者不必相互抵触 其他,但在实践中他们倾向于。花在一个身上的时间不是时间 花在另一个上。投资有心理承诺 以一种或另一种方法。而人类知识的方法倾向于 使方法复杂化,使其不太适合服用 利用计算的通用方法的优势。曾经有 人工智能研究人员姗姗来迟地了解这种苦涩的许多例子 课 回顾一些最突出的,是很有启发性的。

        在电脑国际象棋中,击败世界冠军的方法, 卡斯帕罗夫在1997年进行了大规模的深度搜索。当时, 大多数计算机国际象棋对此感到沮丧 追求利用人类理解的方法的研究人员 国际象棋的特殊结构。当一个更简单、基于搜索的 事实证明,使用特殊硬件和软件的方法要多得多 有效,这些基于人类知识的国际象棋研究人员并不好 失败者。他们说这次“蛮力”搜索可能赢了, 但这不是一个一般的策略,反正也不是人们如何 下棋。这些研究人员希望基于人类输入的方法 赢了,当他们没有获胜时,他们感到失望。

        类似的研究进展模式在计算机围棋中也出现了,只是 又推迟了20年。我们付出了巨大的初步努力 通过利用人类知识或 游戏的特殊功能,但所有这些努力都被证明是无关紧要的, 或者更糟糕的是,一旦搜索被有效地大规模应用。也很重要 是利用自我游戏的学习来学习一个价值函数(因为它 在许多其他游戏中,甚至在国际象棋中,尽管学习没有 在 1997 年首次击败世界冠军的节目中发挥了重要作用)。 通过自我游戏学习,以及一般的学习,就像搜索一样 它使大规模计算成为可能。搜索和 学习是利用的两类最重要的技术 人工智能研究中的大量计算。在计算机围棋中,如在 计算机国际象棋,研究人员最初的努力是针对 利用人类的理解(这样需要的搜索更少),并且只有 很久以后,通过拥抱搜索和 学习。

        在语音识别方面,有一个早期的比赛,由 DARPA在1970年代。参赛者包括许多特殊方法,这些方法 拿走了 人类知识的优势---单词、音素、 人体声道等另一方面是较新的方法 更具统计性 and 做了更多的计算,基于 隐马尔可夫模型 (HMM)。再一次,统计方法胜出 而不是基于人类知识的方法。这导致了 所有的自然语言处理,逐渐经过几十年,其中 统计学和计算开始主导该领域。最近的崛起 语音识别中的深度学习是这方面的最新一步 一致的方向。深度学习方法对人类的依赖程度更低 知识,并使用更多的计算,以及学习 庞大的训练集,以产生显着更好的语音识别 系统。就像在游戏中一样,研究人员总是试图制造 按照研究人员认为他们自己的思想工作的方式工作---他们 试图将这些知识放入他们的系统中---但最终证明 适得其反,并且极大地浪费了研究人员的时间,当, 通过摩尔定律,大规模计算变得可用,并成为一种手段 被发现很好地利用了它。

        在计算机视觉中,也有类似的模式。早期方法 视觉被设想为寻找边缘或广义圆柱体, 或就 SIFT 功能而言。但今天这一切都被抛弃了。摩登 深度学习神经网络仅使用卷积和 某些类型的不变性,并且性能要好得多。

        这是一个很大的教训。作为一个领域,我们还没有彻底学习 它,因为我们继续犯同样的错误。看 这一点,为了有效地抵制它,我们必须了解 这些错误。我们必须吸取惨痛的教训,即如何建立 我们认为从长远来看是行不通的。惨痛的教训是 基于以下历史观察:1)人工智能研究人员经常 试图将知识构建到他们的代理中,2)这总是有助于 短期内,对研究人员个人来说是满意的,但 3) 在 从长远来看,它会停滞不前,甚至抑制进一步的进展,以及 4) 突破性的进展最终是通过基于相反的方法实现的 关于通过搜索和学习进行缩放计算。最终的成功是 带有苦味,并且经常不完全消化,因为它是 成功胜过偏爱的、以人为本的方法。

        应该从惨痛的教训中学到的一件事是伟大的 通用方法的力量,持续扩展的方法 随着计算的增加,即使可用的计算变得 非常好。似乎以这种方式任意扩展的两种方法 是搜索学习

        从惨痛的教训中可以学到的第二个要点是 心灵的实际内容是极其复杂的,无可救药的;我们 应该停止试图寻找简单的方法来思考 思想,例如思考空间、物体、多个的简单方法 代理或对称性。所有这些都是任意的一部分, 本质上复杂的外部世界。它们不是应该建造的 因为它们的复杂性是无穷无尽的;相反,我们应该只构建 可以找到并捕获这种任意复杂性的元方法。 这些方法的关键是它们可以找到良好的近似值, 但寻找它们应该通过我们的方法,而不是我们。我们想要人工智能 可以像我们一样发现的代理,而不是包含我们所拥有的 发现。建立我们的发现只会让我们更难看到如何 发现过程。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值