解决浏览器“由你的组织管理”或“由贵单位管理”

寒假在家使用自己电脑时,浏览器出现意外关闭,一次以为没什么,这两天出现好几次,时不时地来一下,太搞心态了,必须给他解决了。

一番检查后,是浏览器自动安装了一款截屏的扩展,浏览器识别到该插件是包含病毒信息的,启动防御机制,关闭浏览器了。

自己也没有设置什么东西呀,为什么会自动安装扩展呢,手动删除了,一段时间后还是会安装回来,只要自动安装了,还是会自动关闭浏览器,就离谱。

点到浏览器的设置里面发现最下面有一个“由你的组织管理”,这好像在系统更新前是没有的。
在这里插入图片描述
点进这个组织管理,可以看到某些策略是由组织管理的,看到自己的列表里有一个好像名叫“ExtensionInstallAllow…”的策略,只能查看,不能修改,并强制执行的。从名字上看感觉这个和自己的插件自动安装有关,逐渐接近问题答案了。
在Microsoft交流论坛上找到相关的解决方案,但是并不适用自己的问题。
在这里插入图片描述
参考其他方案, “此电脑”–“属性”–“系统保护”–“计算机名”–“网络ID”–选择“这是一台家庭计算机,不是办公网络是一部分”–应用–重启计算机;
重置浏览器;
修复浏览器;
卸载浏览器并重装;
均无济于事。

最后还是回到自己遇到的问题上来:

1. edge://policy 或者 chrome://policy 查看浏览器的策略名

在这里插入图片描述

2. win + r ,输入regedit 打开注册表编辑器,选择“计算机”

在这里插入图片描述

3. 选择“编辑”,“查找”,输入策略名进行查找

在这里插入图片描述

4. 查找到相应的策略名,删除。

1.在这里提一下,跟Microsoft论坛上的解决方案差不多,但是不同电脑的策略存放目录稍有不同,直接按照提供的目录去删除,大概率出现找不到的情况,此处选择查找的方法,查找到该位置。
2.删除相应策略名下的内容,基本就可以了,当然也要根据自己的情况,谨慎删除

5. 重启计算机,摆脱组织的管理了。

用了几天浏览器,没再遇到这样的情况了,应该算是解决了,特来记录,Nice!


2022.2.9更新

用过一段时间后,发现edge浏览器还是会出现“由你的组织管理”,这个问题没能彻底解决。
这是由于升级后的windows系统添加并配置了 extensioninstallallowlist 这一策略,每次开机都会检查注册表的完整性,删除了也会自动添加上。浏览器防火墙会有对于扩展的安全检测,一旦被认定有包含病毒信息,就会自动关闭浏览器,其中 screenshot pro即是一个认定为不安全的扩展。

浏览网上其他的解决方案,有建议

  • 关掉windows的自动更新策略
  • 关闭自动检测注册表完整性的策略
  • 也有修改 extensioninstallallowlist 这一策略值的。

本人对修改注册表中的策略值持保守建议,目前解决方法是:关闭Windows浏览器防火墙,浏览器虽然还是由组织管理,但使用起来还算稳定,没有再出现意外关闭的情况了,但是不建议这样操作

### 大模型对齐微调DPO方法详解 #### DPO简介 直接偏好优化(Direct Preference Optimization, DPO)是一种用于改进大型语言模型行为的技术,该技术通过结合奖励模型训练和强化学习来提升训练效率与稳定性[^1]。 #### 实现机制 DPO的核心在于它能够依据人类反馈调整模型输出的概率分布。具体来说,当给定一对候选响应时,DPO试图使更受偏好的那个选项具有更高的生成概率。这种方法不仅简化了传统强化学习所需的复杂环境设置,而且显著增强了模型对于多样化指令的理解能力和执行精度[^2]。 #### PAI平台上的实践指南 为了便于开发者实施这一先进理念,在PAI-QuickStart框架下提供了详尽的操作手册。这份文档覆盖了从环境配置直至完成整个微调流程所需的一切细节,包括但不限于数据准备、参数设定以及性能评估等方面的内容。尤其值得注意的是,针对阿里云最新发布的开源LLM——Qwen2系列,文中给出了具体的实例说明,使得即使是初次接触此类工作的用户也能顺利上手。 ```python from transformers import AutoModelForCausalLM, Trainer, TrainingArguments model_name_or_path = "qwen-model-name" tokenizer_name = model_name_or_path training_args = TrainingArguments( output_dir="./results", per_device_train_batch_size=8, num_train_epochs=3, ) trainer = Trainer( model_init=lambda: AutoModelForCausalLM.from_pretrained(model_name_or_path), args=training_args, train_dataset=train_dataset, ) # 假设已经定义好了train_dataset trainer.train() ``` 这段代码片段展示了如何使用Hugging Face库加载预训练模型并对其进行微调的过程。虽然这里展示的例子并不完全对应于DPO的具体实现方式,但它提供了一个基础模板供进一步定制化开发之用[^3]。
评论 20
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值