2021-07-21

傅里叶变换思路整理(第一部分 连续函数的变换原理及DFT、FFT要用的性质)

最近打算用verilog写一个FFT的IP核。
但是在此之前打算将FourierTransform的完整思路整理下,在历史上FT受到著名数学家lagrange的质疑
直到weierstrass等人将无穷小量分析严格化…经历了无数数学家的工作。用无限个周期连续函数去表出非连续函数的矛盾才得到解决(本文不证明,只是整理FT的逻辑和思路)。
这可能并非仅仅是18世纪的思维难题,即使到了今天,作为普通的工程师还是要为此辛苦整理思路推导一番。

傅里叶级数的思路

对于有f(t) = f(t+T) 我们可以认为这个函数(信号)的频率
在这里插入图片描述

若f(t)满足一个周期内绝对可积,则f(t)可由一组复指数函数的线性组合去无限接近
在这里插入图片描述
若要求出特定的复指数函数的强度Cs
在这里插入图片描述

左边只有在j=s时在一个周期内定积分不为0 ,而为j=s时积分号内为1
在这里插入图片描述
结论就是
在这里插入图片描述

因此 叫法上把 分析展成级数的每个系数
在这里插入图片描述
叫傅里叶级数分析 F anlysis

而表出被分解成级数的周期函数f(t)
在这里插入图片描述
(式子1) 称为函数f(t)的傅里叶级数综合 F synthesis
当把T定义为基频周期时
在这里插入图片描述
可以看成组成f(t)的和函数中最低频的周期函数的角频率
同时它也是频谱图中的频域采样单位 取频单位

傅里叶变换与反变换

当f(t)不是周期函数时,可以想象它的周期变得无穷大,这时取频单位
在这里插入图片描述
将变得无穷小
取频的数集
在这里插入图片描述
将是与实数集等势同样稠密的数集
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
(式子2)
在这里插入图片描述

将 式子1 中cs由 式子2 中的关系代入可得
在这里插入图片描述
上面两个式子就分别是FT的正反式子了,至于1/2pi该出现在哪 是否该直接用频率的指数函数,会使得正反变换的式子略有不同
在这里插入图片描述

傅里叶变换的对偶

如果将上面一对式子中t由-w代入 w有t代入 变换的恒等关系依然会保持
在这里插入图片描述

如果我将之前的正反变换关系看这组式子将会得到这样的结论
如果一个函数F(w)是f(t)的变换 那么F(t)的变换将是在这里插入图片描述
这个结论很重要,应用到DFT的理论里 可以这么想
因为我们知道一般周期函数变换可以变成以其基波频率为单位的离散函数
那么离散函数的变换是什么 将是一个w反演周期函数再乘以1/2pi的函数! 说到底也是一个周期函数
因此我可以得出结论 离散函数的变换是周期函数,再想一步,离散且周期函数的变换是啥
对了!它的变换是离散周期函数!

因此我们可以将模拟信号进行离散化采集 然后认为这个信号周期延拓满整个定义域 这样变换的函数反变换回去依然还是原始的模拟信号的离散化函数。

  • 3
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值