mmse求解(RS)速率分拆的和速率问题

今天看了一篇关于速率分拆的论文,在对比5g中的noma技术后,发现这个技术也比较有意思,特此记录下来作为笔记。论文链接在文末。论文看的不太细致,有错误望请海涵。

消息 W 1 , … , W K {W_1}, \ldots ,{W_K} W1,,WK,被发送给用户1,用户2,…用户K。遵循RS原则,发给其中第k个用户的消息 W k {W_k} Wk被分为公共速率{W_{c,k}}和私人速率 W p , k {W_{p,k}} Wp,k,公共消息被公共码本编码为 s c {{s_c}} sc,私人速率被编码为私人信息 s k {{s_k}} sk。这里预编码矩阵为 P = [ p c , p 1 , ⋯ p k ] {\bf{P}} = \left[ {{{\bf{p}}_c},{{\bf{p}}_1}, \cdots {{\bf{p}}_k}} \right] P=[pc,p1,pk]
举个栗子,假设是k=2的两用户的miso下行链路问题,发送给用户的消息为: W k {W_k} Wk, ∀ k ∈ { 1 , 2 } \forall k \in \left\{ {1,2} \right\} k{1,2}。其被拆分为公共速率{W_{c,k}}和私人速率 W p , k {W_{p,k}} Wp,k。公共部分{W_{c,1}}和{W_{c,2}}被编码为 s c {{s_c}} sc,私人部分 W p , k {W_{p,k}} Wp,k被编码为 s 1 {{s_1}} s1 s 2 {{s_2}} s2
所以,发送信号为:
x = P s = p c s c + p 1 s 1 + p 2 s 2 {\bf{x}} = {\bf{Ps}} = {{\bf{p}}_c}{{\bf{s}}_c} + {{\bf{p}}_1}{{\bf{s}}_1} + {{\bf{p}}_2}{{\bf{s}}_2} x=Ps=pcsc+p1s1+p2s2
第k个用户的接收信号为:
y k = h k H x + n k , ∀ k ∈ K {y_k} = {\bf{h}}_k^H{\bf{x}} + {n_k},\forall k \in {K} yk=hkHx+nk,kK
类似noma,rs在的接收端的解调也是采用串行干扰消除(SIC)技术,即先解调公共速率部分,把私人速率当成干扰,在解调完公共速率后,再从接收信号中减掉公共速率的部分,然后再解调私人速率部分,把另外用户的私人速率部分当作干扰。 遵循上述原则,可以写出第k个用户的公共和私人部分的信噪比如下:
γ c , k = ∣ h k H p c ∣ 2 ∑ j = 1 K ∣ h k H p j ∣ + σ k 2 {\gamma _{c,k}} = \frac{{{{\left| {{\bf{h}}_k^H{{\bf{p}}_c}} \right|}^2}}}{{\sum\limits_{j = 1}^K {\left| {{\bf{h}}_k^H{{\bf{p}}_j}} \right| + {\sigma _k}^2} }} γc,k=j=1KhkHpj+σk2hkHpc2
γ p , k = ∣ h k H p k ∣ 2 ∑ j = 1 , j ≠ k K ∣ h k H p j ∣ 2 + σ k 2 , j ≠ k {\gamma _{p,k}} = \frac{{{{\left| {{\bf{h}}_k^H{{\bf{p}}_k}} \right|}^2}}}{{\sum\limits_{j = 1,j \ne k}^K {{{\left| {{\bf{h}}_k^H{{\bf{p}}_j}} \right|}^2} + {\sigma _k}^2} }},j \ne k γp,k=j=1,j=kKhkHpj2+σk2hkHpk2,j=k
根据香农公式,第k个用户的的公共速率和私人速率表达式为: R c , k = log ⁡ ( 1 + γ c , k ) {R_{c,k}} = \log \left( {1 + {\gamma _{c,k}}} \right) Rc,k=log(1+γc,k) R p , k = log ⁡ ( 1 + γ p , k ) {R_{p,k}} = \log \left( {1 + {\gamma _{p,k}}} \right) Rp,k=log(1+γp,k)
注意到这里,为了保证公共消息Sc可以被所有用户解调,这里有: R c = min ⁡ k ∈ K { R c , k } {R_c} = \mathop {\min }\limits_{k \in K} \left\{ {{R_{c,k}}} \right\} Rc=kKmin{Rc,k}。即公共速率取所有用户公共速率的最小值。
所以,最大化和速率可以刻画为下列优化问题:
在这里插入图片描述
上述优化问题不是凸问题,论文中作者采用WMMSE的方法去把这个问题变成凸问题来求解,过程如下:
首先,假设接收信号会通过均衡器,用g表示,解调出想要的消息,当然,解调出的消息跟原消息肯定不是一模一样的,必然存在差值,将解调出的消息用上标^表示。假设这个均衡器是线性的。
例如:解调时, s ^ c , k = g c , k y k {\hat s_{c,k}}{\rm{ = }}{g_{c,k}}{y_k} s^c,k=gc,kyk,在经过SIC过程后, s ^ k = g k ( y k − h k H p c s ^ c , k ) {{\hat s}_k}{\rm{ = }}{g_{k}}\left( {{y_k} - {\bf{h}}_k^H{{\bf{p}}_c}{{\hat s}_{c,k}}} \right) s^k=gk(ykhkHpcs^c,k).。
有了上述式子,那么问题来了,怎样去设计一个最优的均衡器,会使得接收到的消息尽可能的还原发送的消息?
可以类比机器学习中的MSE均方差损失,记:接收消息和发送消息的均方差为:
在这里插入图片描述
分别求出 ε c , k {\varepsilon _{c,k}} εc,k ε k {\varepsilon _{k}} εk的最小值,则对应 s ^ {\hat s} s^与s最接近,取这个最小值所对应的均衡器g,就是我们想要的最优的均衡器,它可以让接收消息最逼近发送消息。
那么怎么求这个mse的最小值的,很简单就是求导,因为上面是一个二次的形式,求导可以得到最小值点。
接下来就是一大堆数学计算的问题了。首先,先所有的式子代入,得到:
s ^ c , k = g c , k y k = g c , k ( h k H x + n k ) = g c , k ( h k H ( p c s c + ∑ i = 1 k p k s k ) + n k ) {{\hat s}_{c,k}}{\rm{ = }}{g_{c,k}}{y_k} = {g_{c,k}}\left( {{\bf{h}}_k^H{\bf{x}} + {n_k}} \right) = {g_{c,k}}\left( {{\bf{h}}_k^H\left( {{{\bf{p}}_c}{{\bf{s}}_c} + \sum\limits_{i = 1}^k {{{\bf{p}}_k}{{\bf{s}}_k}} } \right) + {n_k}} \right) s^c,k=gc,kyk=gc,k(hkHx+nk)=gc,k(hkH(pcsc+i=1kpksk)+nk)
ε c , k = E { ∣ s ^ c , k − s c ∣ 2 } = ∣ g c , k ( h k H ( p c s c + ∑ i = 1 k p k s k ) + n k ) − s c ∣ 2 {\varepsilon _{c,k}} = E\left\{ {{{\left| {{{\hat s}_{c,k}} - {s_c}} \right|}^2}} \right\} = {\left| {{g_{c,k}}\left( {{\bf{h}}_k^H\left( {{{\bf{p}}_c}{{\bf{s}}_c} + \sum\limits_{i = 1}^k {{{\bf{p}}_k}{{\bf{s}}_k}} } \right) + {n_k}} \right) - {s_c}} \right|^2} εc,k=E{s^c,ksc2}=gc,k(hkH(pcsc+i=1kpksk)+nk)sc2
注意: 这里有一堆假设,便于结果化简:

  1. 发送信号 E ( s s H ) = I E\left( {s{s^H}} \right) = {\bf{I}} E(ssH)=I,相当于1;
  2. 经过编码后的信号Sc,Sk之间是相互正交的,乘积为0
  3. 信号和噪声也是正交的。

基于上述假设,可求得,mse为:
ε c , k = ∣ g c , k ∣ 2 ( ∣ p c H h k H ∣ 2 + ∑ i = 1 K ∣ p i H h k H ∣ 2 + 1 ) − 2 R { g c , k h k H p c } + 1 {\varepsilon _{c,k}} = {\left| {{g_{c,k}}} \right|^2}\left( {{{\left| {{\bf{p}}_c^H{\bf{h}}_k^H} \right|}^2} + \sum\limits_{i = 1}^K {{{\left| {{\bf{p}}_i^H{\bf{h}}_k^H} \right|}^2} + 1} } \right) - 2R\left\{ {{g_{c,k}}{\bf{h}}_k^H{{\bf{p}}_c}} \right\} + 1 εc,k=gc,k2(pcHhkH2+i=1KpiHhkH2+1)2R{gc,khkHpc}+1
同理:
s ^ k = g k ( y k − h k H p c s ^ c , k ) = g k ( h k H ( p c s c + ∑ i = 1 K p k s k ) + n k − h k H p c s ^ c , k ) {{\hat s}_k}{\rm{ = }}{g_k}\left( {{y_k} - {\bf{h}}_k^H{{\bf{p}}_c}{{\hat s}_{c,k}}} \right) = {g_k}\left( {{\bf{h}}_k^H\left( {{{\bf{p}}_c}{{\bf{s}}_c} + \sum\limits_{i = 1}^K {{{\bf{p}}_k}{{\bf{s}}_k}} } \right) + {n_k} - {\bf{h}}_k^H{{\bf{p}}_c}{{\hat s}_{c,k}}} \right) s^k=gk(ykhkHpcs^c,k)=gk(hkH(pcsc+i=1Kpksk)+nkhkHpcs^c,k)
ε k = E { ∣ s ^ k − s k ∣ 2 } = ∣ g k ( h k H ( p c s c + ∑ i = 1 K p k s k ) + n k − h k H p c s ^ c , k ) − s k ∣ 2 {\varepsilon _k} = E\left\{ {{{\left| {{{\hat s}_k} - {s_k}} \right|}^2}} \right\} = {\left| {{g_k}\left( {{\bf{h}}_k^H\left( {{{\bf{p}}_c}{{\bf{s}}_c} + \sum\limits_{i = 1}^K {{{\bf{p}}_k}{{\bf{s}}_k}} } \right) + {n_k} - {\bf{h}}_k^H{{\bf{p}}_c}{{\hat s}_{c,k}}} \right) - {s_k}} \right|^2} εk=E{s^ksk2}=gk(hkH(pcsc+i=1Kpksk)+nkhkHpcs^c,k)sk2
同样有上述假设:

  1. 发送信号 E ( s s H ) = I E\left( {s{s^H}} \right) = {\bf{I}} E(ssH)=I,相当于1;
  2. 经过编码后的信号Sc,Sk之间是相互正交的,乘积为0
  3. 信号和噪声也是正交的
    ε k = ∣ g k ∣ 2 ( ∑ i = 1 K p i h k + 1 ) − 2 R { g k h k H p k } + 1 {\varepsilon _k} = {\left| {{g_k}} \right|^2}\left( {\sum\limits_{i = 1}^K {{{\bf{p}}_i}{{\bf{h}}_k}} + 1} \right) - 2R\left\{ {{g_k}{\bf{h}}_k^H{{\bf{p}}_k}} \right\} + 1 εk=gk2(i=1Kpihk+1)2R{gkhkHpk}+1

对上述两个mse做个形式上的简化,把其中不含自变量的式子(也就不含g)提到一边,令 T c , k = ∣ p c H h k ∣ 2 + T k {T_{c,k}} = {\left| {{\bf{p}}_c^H{{\bf{h}}_k}} \right|^2} + {T_k} Tc,k=pcHhk2+Tk T k = ∑ i = 1 K ∣ p i H h k ∣ 2 + 1 {T_k} = {\sum\limits_{i = 1}^K {\left| {{\bf{p}}_i^H{{\bf{h}}_k}} \right|} ^2} + 1 Tk=i=1KpiHhk2+1
有如下形式:
ε c , k = ∣ g c , k ∣ 2 T c , k − 2 R { g c , k h k H p c } + 1 {\varepsilon _{c,k}} = {\left| {{g_{c,k}}} \right|^2}{T_{c,k}} - 2R\left\{ {{g_{c,k}}{\bf{h}}_k^H{{\bf{p}}_c}} \right\} + 1 εc,k=gc,k2Tc,k2R{gc,khkHpc}+1
ε k = ∣ g k ∣ 2 T k − 2 R { g k h k H p k } + 1 {\varepsilon _k} = {\left| {{g_k}} \right|^2}{T_k} - 2R\left\{ {{g_k}{\bf{h}}_k^H{{\bf{p}}_k}} \right\} + 1 εk=gk2Tk2R{gkhkHpk}+1
(敲公式真的累啊啊啊)
接下来,就是对上面两个式子进行求导了。
通过对 ∂ ε c , k ∂ g c , k = 0 , ∂ ε k ∂ g k = 0 \frac{{\partial {\varepsilon _{c,k}}}}{{\partial {g_{c,k}}}} = 0,\frac{{\partial {\varepsilon _k}}}{{\partial {g_k}}} = 0 gc,kεc,k=0,gkεk=0,其他的看作常数,可以求得:
此时,使得导数为0得点为: g c , k m m s e = p c H h k T c , k − 1 , g k m m s e = p k H h k T k − 1 g_{c,k}^{mmse} = {\bf{p}}_c^H{{\bf{h}}_k}T_{c,k}^{ - 1},g_k^{mmse} = {\bf{p}}_k^H{{\bf{h}}_k}T_k^{ - 1} gc,kmmse=pcHhkTc,k1,gkmmse=pkHhkTk1。代入表达式,可得最小得mmse值为:
ε c , k m m s e = min ⁡ g c , k { ε c , k } = T c , k − 1 I c , k \varepsilon _{c,k}^{mmse} = \mathop {\min }\limits_{{g_{c,k}}} \left\{ {{\varepsilon _{c,k}}} \right\} = T_{c,k}^{ - 1}{I_{c,k}} εc,kmmse=gc,kmin{εc,k}=Tc,k1Ic,k ε k m m s e = min ⁡ g c , k { ε k } = T k − 1 I k \varepsilon _k^{mmse} = \mathop {\min }\limits_{{g_{c,k}}} \left\{ {{\varepsilon _k}} \right\} = T_k^{ - 1}{I_k} εkmmse=gc,kmin{εk}=Tk1Ik这里, I c , k = T k , I k = T k − ∣ p k H h k ∣ 2 {I_{c,k}} = {T_k},{I_k} = {T_k} - {\left| {{\bf{p}}_k^H{{\bf{h}}_k}} \right|^2} Ic,k=Tk,Ik=TkpkHhk2
这里,我们可以把 I c , k {I_{c,k}} Ic,k I k {I_{k}} Ik带进去观察一下:
ε c , k m m s e = T c , k − 1 I c , k = ∑ i = 1 K ∣ p i H h k ∣ 2 + 1 ∣ p c H h k ∣ 2 + ∑ i = 1 K ∣ p i H h k ∣ 2 + 1 \varepsilon _{c,k}^{mmse} = T_{c,k}^{ - 1}{I_{c,k}} = \frac{{{{\sum\limits_{i = 1}^K {\left| {{\bf{p}}_i^H{{\bf{h}}_k}} \right|} }^2} + 1}}{{{{\left| {{\bf{p}}_c^H{{\bf{h}}_k}} \right|}^2} + {{\sum\limits_{i = 1}^K {\left| {{\bf{p}}_i^H{{\bf{h}}_k}} \right|} }^2} + 1}} εc,kmmse=Tc,k1Ic,k=pcHhk2+i=1KpiHhk2+1i=1KpiHhk2+1 ε k m m s e = T k − 1 I k = ∑ i = 1 , i ≠ k K ∣ p i H h k ∣ 2 ∑ i = 1 K ∣ p i H h k ∣ 2 + 1 \varepsilon _k^{mmse} = T_k^{ - 1}{I_k} = \frac{{{{\sum\limits_{i = 1,i \ne k}^K {\left| {{\bf{p}}_i^H{{\bf{h}}_k}} \right|} }^2}}}{{{{\sum\limits_{i = 1}^K {\left| {{\bf{p}}_i^H{{\bf{h}}_k}} \right|} }^2} + 1}} εkmmse=Tk1Ik=i=1KpiHhk2+1i=1,i=kKpiHhk2
是不是发现有点和前面推导得信噪比的形式有点像,重新给出信噪比的表达式如下图,注意噪声的方差假设为1:
在这里插入图片描述
对的,这里信噪比和mmse值得关系就是: γ c , k = 1 ε c , k m m s e − 1 , γ k = 1 ε k m m s e − 1 {\gamma _{c,k}} = \frac{1}{{\varepsilon _{c,k}^{mmse}}} - 1,{\gamma _k} = \frac{1}{{\varepsilon _k^{mmse}}} - 1 γc,k=εc,kmmse11,γk=εkmmse11
所以,我们可以得到对应得香农速率为:
R c , k = − log ⁡ 2 ( ε c , k m m s e ) , R k = − log ⁡ 2 ( ε k m m s e ) {R_{c,k}} = - {\log _2}\left( {\varepsilon _{c,k}^{mmse}} \right),{R_k} = - {\log _2}\left( {\varepsilon _k^{mmse}} \right) Rc,k=log2(εc,kmmse),Rk=log2(εkmmse)
然后,作者进一步采用了mse,加权最小均方误差wmse,来处理上面得到的结果。

ξ c , k = w c , k ε c , k − log ⁡ 2 ( w c , k ) , a n d ξ k = w k ε k − log ⁡ 2 ( w k ) {\xi _{c,k}} = {w_{c,k}}{\varepsilon _{c,k}} - {\log _2}\left( {{w_{c,k}}} \right),and{\rm{ }}{\xi _k} = {w_k}{\varepsilon _k} - {\log _2}\left( {{w_k}} \right) ξc,k=wc,kεc,klog2(wc,k),andξk=wkεklog2(wk)
同样,继续对上式关于w求导得:可得到最优的 w ∗ {w^*} w
w c , k ∗ = ( ε c , k m m s e ) − 1 , a n d w k ∗ = ( ε k m m s e ) − 1 w_{c,k}^* = {\left( {\varepsilon _{c,k}^{mmse}} \right)^{ - 1}},and{\rm{ }}w_k^* = {\left( {\varepsilon _k^{mmse}} \right)^{ - 1}} wc,k=(εc,kmmse)1,andwk=(εkmmse)1
由上可得出,最优的wmse和速率的关系为:
ξ c , k m m s e = min ⁡ w c , k , g c , k ξ c , k = 1 − R c , k , a n d c , k m m s e = min ⁡ w k , g k ξ k = 1 − R k \xi _{c,k}^{mmse} = \mathop {\min }\limits_{{w_{c,k}},{g_{c,k}}} \xi _{c,k}^{} = 1 - {R_{c,k}},and{\rm{ }}_{c,k}^{mmse} = \mathop {\min }\limits_{{w_k},{g_k}} \xi _k^{} = 1 - {R_k} ξc,kmmse=wc,k,gc,kminξc,k=1Rc,k,andc,kmmse=wk,gkminξk=1Rk
把这个结果带入前面所述的优化问题14中,
设一组权值u1,u2;同时,令 c ˉ k {{\bar c}_k} cˉk= − c k -{{\rm{c}}_k} ck,因为速率是关于log的凹函数,则1-log是凸的,再加上 c ˉ k {{\bar c}_k} cˉk,可将原问题由最大化问题变为最小化问题。

可以得到:
min ⁡ p , c , g , w u 1 + u 2 − u 1 ξ 1 − u 2 ξ 2 + u 1 c ˉ 1 + u 2 c ˉ 2 s . t . − c ˉ k + 1 − ξ k ≥ r ˉ , k ∈ 1 , 2 c 1 + c 2 ≥ ξ c c ˉ 1 ≤ 0 , c ˉ 1 ≤ 0 t r { P P H } ≤ P t \begin{array}{l} \mathop {\min }\limits_{p,c,g,w} {u_1} + {u_2} - {u_1}\xi _1^{} - {u_2}\xi _2^{} + {u_1}{{\bar c}_1} + {u_2}{{\bar c}_2}\\ s.t.{\rm{ - }}{{\bar c}_k} + 1 - \xi _k^{} \ge \bar r,k \in 1,2\\ {\rm{ }}{{\rm{c}}_1} + {c_2} \ge \xi _c^{}\\ {\rm{ }}{{\bar c}_1} \le 0,{{\bar c}_1} \le 0\\ {\rm{ tr\{ P}}{{\rm{P}}^H}{\rm{\} }} \le {P_t} \end{array} p,c,g,wminu1+u2u1ξ1u2ξ2+u1cˉ1+u2cˉ2s.t.cˉk+1ξkrˉ,k1,2c1+c2ξccˉ10,cˉ10tr{PPH}Pt
其中,如前所述, ξ c \xi _c^{}{\rm{ }} ξc同样是取公共速率的最小值。
这个问题,对这四个优化变量而言是非凸的,但在固定P, c ˉ k {{\bar c}_k} cˉk后,可采用交替优化的方法来解决此问题。具体参见论文:

https://jwcn-eurasipjournals.springeropen.com/articles/10.1186/s13638-018-1104-7

  • 9
    点赞
  • 29
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 12
    评论
RSMA(Random Access Space-Multiplexing Assisted)是一种用于无线信道接入的技术,通常用于5G通信系统中。它提供了一种灵活且高效的无线接入方式。 RSMA利用了多址技术和波束赋形的方法来增加无线信道的利用率。在RSMA中,波束赋形技术能够将无线信号聚焦到目标用户上,从而提高了传输效率。而多址技术则允许多个用户共享同一个频谱资源。 RSMA与传统的无线接入方式相比,具有一定的优势。首先,RSMA可以通过波束赋形技术在同一时间将信号传输给多个用户,从而提高了频谱资源的利用率。其次,RSMA可以在信道达到容量限制时,通过随机接入的方式为用户提供服务,从而提高了整体的系统性能。此外,RSMA还能够根据用户的需求和信道条件对资源进行动态分配,从而进一步提高了系统的灵活性和效率。 Matlab是一种高级的数学计算和编程软件环境。它在科学、工程等领域中广泛应用。Matlab提供了丰富的函数库和工具箱,能够支持矩阵操作、数据可视化、算法实现等多种功能。 与RSMA相结合,Matlab可以用来进行无线通信系统的建模和仿真。利用Matlab的信号处理和通信工具箱,可以对RSMA的性能进行分析和评估。同时,Matlab还可以用来进行算法的开发和优化,从而提高RSMA的性能。 总的来说,RSMA是一种用于无线信道接入的高效技术。而Matlab作为一个强大的数学计算和编程工具,对于RSMA的分析和优化具有重要的作用。两者相结合,能够提高无线通信系统的效率和性能。
评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

通信仿真爱好者

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值