pytorch报错:RuntimeError: CUDA out of memory.(CUDA内存不足)

查看GPU的运行状况
  • 程序运行中可以通过watch -n 0.1 -d nvidia-smi命令来实时查看GPU占用情况,按Ctrl+c退出
  • 通过nvidia-smi命令来查看某一时刻的GPU的占用情况
    在这里插入图片描述
1、训练阶段

如果是训练时遇到该问题,说明模型的参数太多了,将模型的参数减少该问题就解决了,改小batch_size是不能解决的(我将batch_size设为1都没解决,而且报错时的内存数据都没变),因此,出现这个问题,应该有三个原因:

  • GPU还有其他进程占用显存,导致本进程无法分配到足够的显存
  • 缓存过多,使用torch.cuda.empty_cache()清理缓存(没试过)
  • 卡不行,换块显存更大的卡吧(因为服务器上有4个显卡,所以,选择了序号为3的显卡进行实验)
2、测试阶段

如果是测试时遇到该问题,在测试代码前面加上:with torch.no_grad():

with torch.no_grad():
  # test process
3、GPU显存未释放问题

若使用了上述两种方法还不成功,那么我们就需要手动释放那些已经不需要的进程(这些进程占据着GPU的资源)
我们在使用tensorflow+pycharm 或者PyTorch写程序的时候, 有时候会在控制台终止掉正在运行的程序,但是有时候程序已经结束了,nvidia-smi也看到没有程序了,但是GPU的内存并没有释放,这是怎么回事呢?
使用PyTorch设置多线程(threads)进行数据读取(DataLoader),其实是假的多线程,他是开了N个子进程(PID都连着)进行模拟多线程工作,所以你的程序跑完或者中途kill掉主进程的话,子进程的GPU显存并不会被释放,需要手动一个一个kill才行,具体方法描述如下:

  • 1.先关闭ssh(或者shell)窗口,退出重新登录
  • 2.查看运行在gpu上的所有程序:
fuser -v /dev/nvidia*
  • 3.kill掉所有(连号的)僵尸进程

具体操作步骤如下:

  • 我们可以用如下命令查看 nvidia-smi看不到的GPU进程。
nvidia-smi   

发现内存泄露问题,即没有进程时,内存被占用
在这里插入图片描述

  • 发现僵尸进程(连号的)
fuser -v /dev/nvidia*   

在这里插入图片描述

  • 查看具体这个进程调用GPU的情况
pmap -d PID
  • 强行关掉所有当前并未执行的僵尸进程
kill -9 PID

参考1:https://blog.csdn.net/weixin_38314865/article/details/105998844
参考2:https://www.jianshu.com/p/0d8ea6ca332a

这个错误是由于CUDA内存不足导致的。根据引用\[1\]和引用\[2\]的信息,你的GPU总容量为4.00 GiB或10.76 GiB,但已经分配了2.34 GiB或1.82 GiB的内存,剩余的内存不足以分配14.00 MiB的内存。这可能是由于你的模型或数据的规模过大,导致内存不足。你可以尝试减小batch size或者使用更小的模型来减少内存的使用。另外,你还可以尝试设置max_split_size_mb参数来避免内存碎片化。关于内存管理和PYTORCH_CUDA_ALLOC_CONF的更多信息,请参考PyTorch的文档。 此外,根据引用\[3\]的信息,你还可以通过手动杀死占用GPU内存的进程来释放内存。你可以使用kill命令加上进程的PID来终止该进程,例如kill -9 31272。 综上所述,你可以通过减小batch size、使用更小的模型、设置max_split_size_mb参数或手动杀死占用内存的进程来解决CUDA内存不足的问题。 #### 引用[.reference_title] - *1* [已解决yolov5报错RuntimeError: CUDA out of memory. Tried to allocate 14.00 MiB](https://blog.csdn.net/Code_and516/article/details/129798540)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* *3* [解决RuntimeError: CUDA out of memory. Tried to allocate 14.00 MiB](https://blog.csdn.net/qq_43733107/article/details/126876755)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

还能坚持

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值