【线性代数】第一章:线性方程组

1.1 线性方程组与矩阵的有关概念

  1. 线性方程线性的定义:对未知量 x 1 , x 2 , ⋯   , x n x_1,x_2,\cdots,x_n x1,x2,,xn来说,式子中每项次数最高为1次的方程称为线性方程,否则为非线性方程。

  2. 线性方程组和n元线性方程组:每个方程均为线性方程的方程组称为线性方程组,具有n个未知数的线性方程组为n元线性方程组。

    [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-NpoqJlAd-1665372570661)(C:/Users/sduzj/AppData/Roaming/Typora/typora-user-images/image-20220928204213183.png)]

  3. 和线性方程组对应的矩阵:系数矩阵和增广矩阵,系数矩阵是由线性方程组的系数组成的 m × n m\times n m×n阶矩阵;增广矩阵是由线性方程组的系数和方程值组成的 ( m + 1 ) × n (m+1)\times n (m+1)×n阶矩阵。

在这里插入图片描述

  1. 实矩阵、复矩阵和整数矩阵:矩阵中的元素来源于实数集合R称为实矩阵;矩阵中的元素来源于复数集合C称为复矩阵;矩阵中的元素来源于整数集合Z称为整数矩阵

  2. 行矩阵和列矩阵:只有一行的矩阵称为行矩阵;只有一列的矩阵称为列矩阵

  3. 矩阵的型:矩阵 A m × n A_{m\times n} Am×n中的 m × n m\times n m×n称为矩阵A的型,也读作m行乘n列矩阵

  4. 方阵、方阵的主次对角线:当 m = n m=n m=n时称为 n × n n\times n n×n阶方阵;对于n阶方阵 A = ( a i j ) n × n A=(a_{ij})_{n\times n} A=(aij)n×n,称元素 a 11 , a 22 , ⋯   , a n n a_{11},a_{22},\cdots,a_{nn} a11,a22,,ann为方阵A的主对角线;称元素 a 1 n , a 2 , n − 1 , ⋯   , a n 1 a_{1n},a_{2,n-1},\cdots,a_{n1} a1n,a2,n1,,an1为方阵A的次对角线

  5. 转置矩阵:对于矩阵A,称 A T A^T AT为A的转置矩阵。若 A = ( a i j ) m × n A=(a_{ij})_{m\times n} A=(aij)m×n,则 A T = ( a j i ) n × m A^T=(a_{ji})_{n\times m} AT=(aji)n×m

    [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-jJ9MIEyI-1665372570663)(C:/Users/sduzj/AppData/Roaming/Typora/typora-user-images/image-20220928205636866.png)][外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-AUZ99TLe-1665372570664)(C:/Users/sduzj/AppData/Roaming/Typora/typora-user-images/image-20220928205653058.png)]

  6. 单位矩阵、对角矩阵、数量矩阵、零矩阵、上(下)三角矩阵单位矩阵是指对角线元素都为1,其余元素都为0的n阶方阵E(也记作I);对角矩阵是指除对角线元素外其余元素都为0的n阶方阵,显然单位矩阵是对角矩阵的一种特例;零矩阵是指元素全部为0的 m × n m\times n m×n矩阵;上(下)三角矩阵是指对角线以下(上)的元素全为0的方阵。

    [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-LEOK2SBS-1665372570665)(C:/Users/sduzj/AppData/Roaming/Typora/typora-user-images/image-20220928210127691.png)][外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-MviJV7aW-1665372570665)(C:/Users/sduzj/AppData/Roaming/Typora/typora-user-images/image-20220928210140426.png)][外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-dPum7hp0-1665372570666)(C:/Users/sduzj/AppData/Roaming/Typora/typora-user-images/image-20220928210159708.png)][外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-XBOPHOhD-1665372570667)(C:/Users/sduzj/AppData/Roaming/Typora/typora-user-images/image-20220928210217731.png)][外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-inKXgLSN-1665372570668)(C:/Users/sduzj/AppData/Roaming/Typora/typora-user-images/image-20220928210228136.png)]

1.2 线性方程组解的存在性

  1. 方程组的齐次和非齐次:在n元线性方程组中,如 b 1 , b 2 , ⋯   , b m b_1,b_2,\cdots,b_m b1,b2,,bm全为0,则称为n元齐次线性方程组;反之若不全为0,则称为n元非齐次线性方程组。

  2. 线性方程组的同解变换与矩阵的初等行变换

    线性方程组的同解变换有

    1. 交换第 i 个方程和第 j 个方程的位置
    2. 第 i 个方程两边同时乘以不为0的数k
    3. 第 i 个方程两边同时乘以一个数k后,分别加在第 j 个方程的两边

    线性方程组的同解变换对应到增广矩阵的初等行变换上:

    1. 换行:交换第 i 行和第 j 行的位置,记为 r i ↔ r j r_i\leftrightarrow r_j rirj
    2. 倍乘:将第 i 行乘以不为0的数k,记为 k r i ( k ≠ 0 ) kr_i(k\neq 0) kri(k=0)
    3. 倍加:将第 i 行乘以一个数k加在第 j 行,记为 k r i + r j kr_i+r_j kri+rj
  3. 求解线性方程组的方法:高斯消元法,即在求解过程中逐步消除未知数的个数,对应到增广矩阵中,就是对矩阵进行初等行变换化简称为行阶梯型矩阵

在这里插入图片描述

  1. 行阶梯形矩阵和矩阵的秩:行阶梯型矩阵可以在矩阵中画一条阶梯线,阶梯线下元素全为0,每个台阶只有一行且阶梯线后第一个元素非0;在矩阵 A m × n A_{m\times n} Am×n的行阶梯型矩阵中,非零行的行数称为 A m × n A_{m\times n} Am×n的秩,记作 R ( A ) R(A) R(A)。因此从秩的角度可以看出,线性方程组有解的充要条件是系数矩阵A和增广矩阵B的秩要相等,即 R ( A ) = R ( B ) R(A)=R(B) R(A)=R(B)

  2. 矩阵的初等列变换

    1. 换列:交换第 i 列和第 j 列的位置,记为 c i ↔ c j c_i\leftrightarrow c_j cicj
    2. 倍乘:将第 i 列乘以一个不为0的数k,记为 k c i ( k ≠ 0 ) kc_i(k\neq0) kci(k=0)
    3. 倍加:将第 i 列乘以一个数k加在第 j 列,记为 k c i + c j kc_i+c_j kci+cj

    注意矩阵的初等列变换不能用来求解线性方程组,变换前后方程的解是不等价的。

  3. 矩阵标准型:利用矩阵的初等变换(初等行变换和初等列变换)可以将矩阵化成一个标准型,即矩阵的左上角是一个单位矩阵,其余部分均为0,不难得出左上角的单位矩阵的阶数等于原矩阵的秩。

1.3 线性方程组的高斯求解方法

  1. 行最简形矩阵:一个矩阵的行最简形矩阵首先是该矩阵的行阶梯型矩阵,其次行阶梯型矩阵的非零行首元为1,而且1所在列的其余元素均为0。

  2. 高斯-若尔当消元法求解线性方程组:写出线性方程组的增广矩阵,化简增广矩阵为行阶梯型矩阵,再化简为行最简形矩阵,最后即可写出方程组的通解。

在这里插入图片描述

  1. 先导未知量和自由未知量:在行最简形矩阵中,非零行的首元作为先导未知量,其余未知量作为自由未知量。从化简行最简形矩阵的过程中可以看出先导未知量的个数等于矩阵的秩r,自由未知量的个数为n-r。

  2. 线性方程组解的个数和矩阵秩之间的关系:系数矩阵记为A,增广矩阵记为B

    1. R ( A ) = R ( B ) = r = n R(A)=R(B)=r=n R(A)=R(B)=r=n时,该线性方程组有唯一解
    2. R ( A ) = R ( B ) = r < n R(A)=R(B)=r<n R(A)=R(B)=r<n时,该线性方程组存在n-r个自由未知量,因此有无穷多个解
    3. R ( A ) ≠ R ( B ) R(A)\neq R(B) R(A)=R(B)时,该线性方程组无解

    如果线性方程组是齐次线性方程组,则 R ( A ) = r = n R(A)=r=n R(A)=r=n时,该方程组只有零解

  3. 对于一些方程组当 R ( A ) ≠ R ( B ) R(A)\neq R(B) R(A)=R(B)时,则线性方程组无解,但对于一些实际问题,需要求解出一组 x 1 , x 2 , ⋯   , x n x_1,x_2,\cdots,x_n x1,x2,,xn使得各个方程左右两边差的平方和最小,即求解线性方程组的最小二乘解

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

傻fufu滴人儿~

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值