雷德倒序位算法

雷德倒序位算法主要用于FFT中的奇偶分离,简化蝶形运算过程。例如8点FFT的顺序转化为奇偶部分后,便于进行首位结合。该算法通过二进制倒序加法,从高位向低位寻找可以加1的位置,实现数组中的数值转换。在实际操作中,J变量用于寻找下一个数的位置,确保正确执行进位操作。
摘要由CSDN通过智能技术生成

这个倒序算法主要用到在FFT中,在排序开始时做的奇偶分离用,方便蝶形运算。比如8点FFT结合时的顺序是0,4,2,6,1,5,3,7 ,换成:

0,2,4,6
1,3,5,7

  就看出是分成奇偶后分别的前面一半和后面一半的首位结合,其实这就是二进制的倒序加形成的,最开始 000 ,高位加1 得到100,高位再加1就进位了,不过是向低位进位,010. 所以这个算法的思想就是从高位往低位进位,每次从高往低找,直到找到0 就找到了可以加1 的位置,不然还得“进位”,继续往低找。

#include <stdio.h>
#include <stdlib.h>
#include <math.h>


int main(void)
{
    int array[8]={
  0,1,2,3,<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值