DeepSeek的正确打开方式(工作场景篇)

DeepSeek的正确打开方式(工作场景篇)

前两篇中我们了解到了DeepSeek的初级使用方法,本文我们来聊聊DeepSeek的进阶使用方法:如何更好的在工作中使用AI大模型。

一、提示语与提示语链

提示语和提示语链是我们使用AI模型时的两种不同策略,它们在复杂度、应用场景和设计思路上都有很大的区别,简述二者区别如下

  • 提示语:适合简单任务,单次输入即可完成,设计简单,上下文局限。
  • 提示语链:适合复杂任务,需要多步骤引导,设计复杂,上下文需要管理。

简单对比一下:

我们让AI生成了一篇演讲稿,现在想要再让AI修改一下,有两种策略,一是直接告诉它你想要的修改方向,二是你逐步告诉它第一段修改…第二段修改…

显然前者就是提示语策略,而后者则是提示语链的策略。

有很多人会觉得我直接在一次的提示语中告诉AI第一段修改什么,第二段修改什么不就可以了,何必麻烦搞个提示语链出来呢。

这里再次强调一下:AI和人一样,能够一次性接受的内容是有限度的,分步提示,逐步引导AI,能让AI更好的理解信息

提示语链是一种用分步的思想解决复杂问题的方案。

在这里插入图片描述

二、更好地使用提示语链

本节我们来了解一下与AI的链式沟通方式中的细节,看看我们如何更好的设计属于自己工作场景中的“提示语链”。

1. 明确任务目标
  • 在设计提示语链之前,首先明确任务的最终目标。例如:
    • 目标1:生成一篇长文。
    • 目标2:解决一个复杂问题。
    • 目标3:生成一份数据分析报告。
  • 将目标分解为多个子任务,并为每个子任务设计提示语,这样可以避免生成内容时的偏离和混乱。
2. 设计清晰的提示语链结构

在设计提示语链时,需要保证每个步骤都能传递足够的上下文信息,以帮助模型保持连贯性。如果每一步的提示语都没有参考前一步的内容,可能导致输出不连贯,甚至是矛盾的答案。

  • 顺序链:按照逻辑顺序逐步引导AI完成任务。
    • 示例:
      1. 生成大纲。
      2. 扩展内容。
      3. 润色语言。
  • 分支链:根据中间结果动态调整后续提示语。
    • 示例:
      • 如果生成的方案A不够理想,设计一个分支提示语生成方案B。
  • 迭代链:通过多次迭代优化输出。
    • 示例:
      • 生成初稿→反馈修改→生成终稿。
3. 编写高质量的提示语

要质量高,也要足够简洁,避免模糊或不必要的信息。

  • 明确指令:每个提示语应包含清晰的指令,告诉AI具体要做什么。

    要让AI按照你的想法做事,要给出清晰的指令,推理模型同理。

    • 示例:
      • “生成一个关于气候变化的文章大纲,包含引言、主体和结论。”
  • 提供上下文:在每个提示语中提供足够的上下文信息,确保AI理解任务背景。

    • 示例:
      • “基于以下大纲,扩展第二段内容:{大纲内容}。”
  • 限制输出格式:如果需要特定格式的输出,可以在提示语中明确说明。

    • 示例:
      • “生成一个包含5个步骤的操作指南,每个步骤不超过50字。”
4. 处理中间输出
  • 提取关键信息:从AI的中间输出中提取关键信息,作为下一个提示语的输入。
    • 示例:
      • 从生成的大纲中提取段落标题,用于生成详细内容。
  • 验证中间结果:检查中间输出是否符合预期,必要时调整提示语或重新生成。
  • 动态调整提示语:根据中间输出的质量,动态调整后续提示语的复杂度或方向。
5. 结合外部工具或数据
  • 数据注入:在提示语链中引入外部数据或知识库,增强AI的输出质量。
    • 示例:
      • “根据以下数据生成报告:{数据}。”
  • 工具集成:结合其他工具(如搜索引擎、数据库)获取信息,再通过提示语链处理。
    • 示例:
      • 使用搜索引擎获取最新数据,然后让AI生成分析报告。
6. 优化提示语链
  • 测试与迭代:通过多次测试提示语链,观察AI的输出质量,逐步优化提示语的设计。
  • 反馈机制:引入人工或自动化反馈机制,评估每个步骤的输出,并调整提示语链。
  • 模型调优:如果提示语链效果不理想,可以尝试微调模型或调整提示语的复杂度。

三、提示语链使用示例

提示语链更多的是用于实际的工作场景,为了达到更好的效果,需要我们细致的去整理、总结对自己有帮助的提示语链,下面举一个《生成市场分析报告》的提示语链示例供大家参考。

在这里插入图片描述

  • 任务目标:生成一份关于“2025年全球电动汽车市场分析”的报告,包含市场概况、主要趋势、竞争分析和未来展望。

第一步:明确任务目标

  • 最终输出:一份结构完整、内容详实的市场分析报告。
  • 分解任务
    1. 生成报告大纲。
    2. 收集并整理市场数据。
    3. 分析主要趋势。
    4. 分析竞争格局。
    5. 生成未来展望。
    6. 润色报告语言。

第二步:设计提示语链结构

  1. 生成报告大纲
  2. 收集并整理市场数据
  3. 分析主要趋势
  4. 分析竞争格局
  5. 生成未来展望
  6. 润色报告语言

第三步:编写提示语链

1. 生成报告大纲

  • 提示语:“生成一份关于‘2025年全球电动汽车市场分析’的报告大纲,包含以下部分:市场概况、主要趋势、竞争分析和未来展望。”

  • 输出示例

    1. 市场概况
       1.1 市场规模
       1.2 市场增长率
       1.3 主要市场驱动因素
    2. 主要趋势
       2.1 技术创新
       2.2 政策支持
       2.3 消费者偏好变化
    3. 竞争分析
       3.1 主要竞争者
       3.2 市场份额
       3.3 竞争策略
    4. 未来展望
       4.1 市场预测
       4.2 潜在挑战
       4.3 发展机遇
    

2. 收集并整理市场数据

  • 提示语:“根据以下数据,整理并总结2025年全球电动汽车市场的关键信息:{市场数据}。”

  • 输入数据

    1. 市场规模:5000亿美元
    2. 市场增长率:25%
    3. 主要市场驱动因素:环保政策、技术进步、消费者需求
    
  • 输出示例

    2025年全球电动汽车市场规模达到5000亿美元,同比增长25%。主要市场驱动因素包括严格的环保政策、电池技术的进步以及消费者对环保车型的需求增加。
    

3. 分析主要趋势

  • 提示语:“根据以下信息,分析2025年全球电动汽车市场的主要趋势:{趋势信息}。”

  • 输入信息

    1. 技术创新:固态电池、自动驾驶技术
    2. 政策支持:各国政府补贴、碳排放法规
    3. 消费者偏好变化:对续航里程和充电便利性的关注
    
  • 输出示例

    2025年全球电动汽车市场的主要趋势包括:
    1. 技术创新:固态电池和自动驾驶技术的快速发展正在推动市场进步。
    2. 政策支持:各国政府的补贴政策和严格的碳排放法规为市场增长提供了有力支持。
    3. 消费者偏好变化:消费者越来越关注续航里程和充电便利性,推动了车企的技术升级。
    

4. 分析竞争格局

  • 提示语:“根据以下信息,分析2025年全球电动汽车市场的竞争格局:{竞争信息}。”

  • 输入信息

    1. 主要竞争者:特斯拉、比亚迪、大众
    2. 市场份额:特斯拉30%,比亚迪20%,大众15%
    3. 竞争策略:技术创新、价格竞争、品牌建设
    
  • 输出示例

    2025年全球电动汽车市场的竞争格局如下:
    1. 主要竞争者:特斯拉、比亚迪和大众是市场的主要玩家。
    2. 市场份额:特斯拉占据30%的市场份额,比亚迪和大众分别占据20%和15%。
    3. 竞争策略:各车企通过技术创新、价格竞争和品牌建设来争夺市场份额。
    

5. 生成未来展望

  • 提示语:“根据以下信息,生成2025年全球电动汽车市场的未来展望:{展望信息}。”

  • 输入信息

    1. 市场预测:2025年市场规模预计达到8000亿美元
    2. 潜在挑战:原材料短缺、充电基础设施不足
    3. 发展机遇:新兴市场增长、技术突破
    
  • 输出示例

    未来展望:
    1. 市场预测:到2025年,全球电动汽车市场规模预计将达到8000亿美元。
    2. 潜在挑战:原材料短缺和充电基础设施不足可能制约市场发展。
    3. 发展机遇:新兴市场的快速增长和技术突破将为市场带来新的机遇。
    

6. 润色报告语言

  • 提示语:“对以下报告内容进行润色,使其更流畅和专业:{报告内容}。”

  • 输入内容

    2025年全球电动汽车市场规模达到5000亿美元,同比增长25%。主要市场驱动因素包括严格的环保政策、电池技术的进步以及消费者对环保车型的需求增加。未来,到2030年,市场规模预计将达到8000亿美元。
    
  • 输出示例

    2025年,全球电动汽车市场实现了显著增长,市场规模达到5000亿美元,同比增长25%。这一增长主要得益于严格的环保政策、电池技术的快速进步以及消费者对环保车型的日益青睐。展望未来,预计到2030年,市场规模将进一步扩大至8000亿美元。
    

第四步:整合结果(整合报告)

将各步骤的输出整合成一份完整的市场分析报告:

**2025年全球电动汽车市场分析报告**

1. 市场概况
   2025年,全球电动汽车市场规模达到5000亿美元,同比增长25%。主要市场驱动因素包括严格的环保政策、电池技术的进步以及消费者对环保车型的需求增加。

2. 主要趋势
   2025年全球电动汽车市场的主要趋势包括:
   - 技术创新:固态电池和自动驾驶技术的快速发展正在推动市场进步。
   - 政策支持:各国政府的补贴政策和严格的碳排放法规为市场增长提供了有力支持。
   - 消费者偏好变化:消费者越来越关注续航里程和充电便利性,推动了车企的技术升级。

3. 竞争分析
   2025年全球电动汽车市场的竞争格局如下:
   - 主要竞争者:特斯拉、比亚迪和大众是市场的主要玩家。
   - 市场份额:特斯拉占据30%的市场份额,比亚迪和大众分别占据20%和15%。
   - 竞争策略:各车企通过技术创新、价格竞争和品牌建设来争夺市场份额。

4. 未来展望
   未来展望:
   - 市场预测:到2025年,全球电动汽车市场规模预计将达到8000亿美元。
   - 潜在挑战:原材料短缺和充电基础设施不足可能制约市场发展。
   - 发展机遇:新兴市场的快速增长和技术突破将为市场带来新的机遇。

第五步:优化与迭代

  • 测试与反馈:检查报告的逻辑性、准确性和流畅性,必要时调整提示语或重新生成部分内容。
  • 迭代优化:根据反馈优化提示语链,确保最终报告的质量。

四、提示语链的应用场景

内容创作

  • 生成长文、故事、报告等。
  • 示例:
    1. 生成大纲。
    2. 扩展段落。
    3. 润色语言。

代码生成与优化

  • 生成代码框架、添加逻辑、优化代码。
  • 示例:
    1. 生成代码框架。
    2. 添加功能逻辑。
    3. 优化代码结构。

数据分析与报告生成

  • 提取数据、生成分析报告。
  • 示例:
    1. 提取关键数据。
    2. 生成报告框架。
    3. 填充报告内容。

复杂问题解决

  • 分步骤解决复杂问题。
  • 示例:
    1. 分析问题。
    2. 生成解决方案。
    3. 评估方案可行性。
<think>好的,我现在需要帮助用户解决如何在DeepSeek中打开图片的问题。首先,我需要查看用户提供的引用内容,看看是否有相关的方法。引用[1]提到使用DeepSeek的在线平台生成PS脚本批量处理图片,比如调整尺寸和分辨率。引用[2]则是关于本地部署DeepSeek的教程,涉及Ollama和Chatbox的安装使用。 用户的问题是如何在DeepSeek中打开图片。根据引用内容,DeepSeek本身可能不直接支持图片处理功能,但可以通过生成脚本或结合其他工具实现。例如,引用[1]中的例子是生成PS脚本,所以可能需要通过自然语言指令让DeepSeek生成相应的代码或步骤,然后用户自行在PS中执行。引用[2]中的本地部署教程可能不涉及图片处理,但用户如果在本地部署环境中可能需要其他方式。 接下来,我需要整理步骤。首先,明确DeepSeek的主要功能是处理自然语言生成脚本或指令,而不是直接操作图片。因此,正确的方法应该是用户通过描述需求,让DeepSeek生成相应的代码或操作步骤,然后在其他软件中执行,比如Photoshop。同时,本地部署的DeepSeek可能需要通过API调用结合其他库处理图片,但这需要编程知识。 可能的回答结构:分在线平台和本地部署两种情况。在线平台中,用户输入指令生成脚本,然后手动在PS中运行;本地部署中,结合Python等语言编写脚本处理图片,可能需要安装Pillow库。同时提醒用户DeepSeek本身不直接打开图片,而是辅助生成代码。 需要验证步骤的正确性,比如生成PS脚本是否可行,本地部署是否支持图片处理库调用。确保引用来源正确,引用[1]和[2]分别对应不同的方法。最后,生成相关问题,如批量处理、调整参数、与其他工具结合等。</think>在DeepSeek中实现图片处理需要结合其他工具,具体方法根据使用场景分为两种: ### 一、在线平台图片处理 1. 登录DeepSeek在线平台,在输入框描述图片处理需求 - 示例指令:_"请生成PS脚本批量打开D:\photos目录下的JPG图片并添加水印"_ 2. 平台会自动生成对应的Photoshop脚本代码 3. 复制生成的脚本到PS的【文件>脚本>浏览】中执行[^1] ### 二、本地部署环境处理 1. 完成Ollama本地部署(参考引用[2]教程) 2. 安装Python图像处理库: ```bash pip install pillow opencv-python ``` 3. 通过API调用实现图片处理: ```python from PIL import Image def open_image(path): try: return Image.open(path) except Exception as e: return f"错误:{str(e)}" ``` ### 三、注意事项 1. DeepSeek不直接操作图片文件,而是提供处理代码/方案 2. 复杂操作需要明确指定文件路径、格式要求等参数 3. 建议先进行小批量测试再正式处理重要文件
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

二哥不像程序员

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值