多重共线性一些指标解释

ANOVA中
F检验

是对整个模型而已的,看是不是自变量系数不全为0,这里F检验值23,对应P概率=0,显著性P<0.05,H1成立,说明显著性非常高

系数中
t检验

则是分别针对某个自变量的,看每个自变量是否有显著预测效力。这里t检验对应概率大于0.05,即显著性一列为0.23和0.48,说明显著性很差

SPSS对于多重共线性的判断指标有以下几种:容忍度(Tolerance)、方差膨胀因子(VIF,Variance Inflation Factor)、特征根(Eigenvalue)、条件指数(Condition Index)和变异构成(Variance Proportion)。

容忍度(Tolerance)

等于1减去以该自变量为因变量,其它自变量依旧为自变量的线性回归模型的决定系数的剩余值(1-R方)。显然,容忍度越小,共线性越严重。一般的认识是,当容忍度小于0.1时,存在严重的多重共线性。

方差膨胀系数(VIF)

等于容忍度的倒数。一般情况下,VIF的值不应该大于5,放宽到容忍度的水平,就是不应该大于10。

特征根(Eigenvalue)

对模型中常数项及所有自变量计算主成分,如果自变量间存在较强的线性相关关系,则前面的几个主成分数值较大,而后面的几个主成分较小,甚至接近于0。

条件指数(Condition Index)

等于最大的主成分与当前主成分的比值的算数平方根。第一个主成分被定义为1。如果有几个条件指数较大,那么就提示存在多重共线性关系。

变异构成(Variance Proportion)

是指回归模型中常数项和自变量项被主成分解释的比例。如果某个主成分对两个或多个自变量的解释的比例都较大,说明这几个自变量间存在一定的共线性。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值