(二十六)【2021 WWW】Knowledge-Preserving Incremental Social Event Detection via Heterogeneous GNNs

在这里插入图片描述
题目: Knowledge-Preserving Incremental Social Event Detection via Heterogeneous GNNs
中文题目: 基于异构gnn的知识保持增量社会事件检测

学习目标

学习怎么知识增强的?

学习怎么处理时间等多个因素的?

学习怎么构建子图的?

学习怎么对新类型有鲁棒性的?

ABSTRACT

Social events: 就是比较大型的新闻,引起了人们的关注! 检测和分析这些事件有助于提取有价值的洞见。 在危机管理、产品推荐和决策等领域有很多应用。

难点

在增量学习环境中获取、保存和扩展知识是主要关注的问题。

过去的方法忽略了社交数据中丰富的语义信息! 而且不能保留住学习到的知识。

本文

KPGNN利用了复杂的社会网络来促进数据的利用。

为了应用传入的数据,采用了contrastive loss terms处理数量不断变化的事件类。

它还利用gnn的归纳学习能力来有效地检测事件,并从之前未见过的数据扩展其知识。

KPGNN在处理大的社会流时,采用小批子图抽样策略进行训练,并定期剔除过时数据以保持动态
的嵌入空间。

KPGNN不需要特征工程,也很少有超参数需要调优。

NOTATIONS AND PROBLEM FORMULATION

我们首先在表1中总结了本文中使用的主要符号。然后我们将社会流、社会事件、社会事件检测和增量社会事件检测形式化如下:
社会流:从社会流(即社交媒体消息序列)中提取相关消息的聚类来表示事件,如Twitter流。

在这里插入图片描述

Definition 2.1. social stream
一个社会流 S = M 0 , . . . , M i − 1 , M i , . . . S = M_0,...,M_{i-1},M_i,... S=M0,...,Mi1,Mi,...是社会信息块的连续和时间序列,其中 M i M_i Mi是一个消息块包含了在时间段内到达的所有消息 [ t i , t i + 1 ) [t_i,t_{i+1}) [ti,ti+1)

我们表示一个消息块 M i M_i Mi M i = { m j ∣ 1 ≤ j ≤ M i } M_i = \left \{{m_j|1\le j\le M_i} \right \} Mi={mj1jMi},其中 m m m是单个消息! m j = { d j , u j , t j } m_j = \left \{ d_j,u_j,t_j \right \} mj={dj,uj,tj}表示为一种社会消息。 其中 d j d_j dj u j u_j uj t j t_j tj表示为关联的文本文档、用户(发送者和提到的用户)和时间戳

Definition 2.2. social event
social event: e = { m i ∣ 1 ≤ i ≤ ∣ e ∣ } e=\left \{ m_i|1 \le i \le \left | e \right | \right \} e={mi1ie}一组相关的社会信息,讨论相同的现实世界发生的事情。注意,我们假设每个社交信息最多只属于一个事件

Definition 2.3.
给定一个消息块 M i M_i Mi,一个社会检测算法学习一个模型 f ( M i ; θ ) = E i f(M_i; \theta) = E_i f(Mi;θ)=Ei 。这样 E i = { e k ∣ 1 ≤ k ≤ ∣ E i ∣ } E_i = \left \{ e_k|1 \le k \le |E_i|\right \} Ei={ek1kEi}是包含在 M i M_i Mi一组事件。

Definition 2.4.
给定社会流S,incremental social event detection算法学习一系列的事件检测模型 f 0 , . . . , f t − w , f t , . . . f_0,...,f_{t-w},f_t,... f0,...,ftw,ft,...,这样 f t ( M i ; θ t , θ t − w ) = E i f_t(M_i;\theta _t,\theta_{t-w})=E_i ft(Mi;θt,θtw)=Ei会为所有的在 { M i ∣ t + 1 ≤ i ≤ t + w } \left \{ M_i|t+1 \le i \le t+w \right \} {Mit+1it+w}中的消息块。 这里, E i = { e k ∣ 1 ≤ k ≤ ∣ E i ∣ } E_{i}=\left\{e_{k}|1 \leq k \leq| E_{i} \mid\right\} Ei={ek1kEi}是一系列的事件包含在消息块 M i M_i Mi w w w是更新模型的window size,而 θ t \theta_t θt θ t − w \theta_{t-w} θtw是两个模型 f t f_t ft f t − w f_{t-w} ftw的参数。 注意 f t f_t ft扩展了 f t − w f_{t-w} ftw的知识,通过根据 θ t − w \theta_{t-w} θtw f 0 f_0 f0就是啥也没有扩展。

3 METHODOLOGY

本节介绍我们提出的KPGNN模型。3.1节介绍了KPGNN的生命周期,给出了KPGNN如何增量运行的大图景。第3.2-3.5节对KPGNN的组件进行了放大,KPGNN的设计目标是增量获取和保存知识。第3.6节分析了KPGNN的时间复杂度。

在这里插入图片描述

3.1 Continuous Detection Framework

在这里插入图片描述
在这里插入图片描述

如图2所示,KPGNN的生命周期包括三个阶段,即预培训、检测和维护

在训练前阶段,我们构建一个初始消息图并训练一个初始模型。

在检测阶段,我们用输入消息块更新消息图,并检测事件。目前的KPGNN模型在进入维护阶段之前对一系列连续的区块进行工作。

在维护阶段,我们从消息图中删除过时的消息,并使用到达最后一个窗口的数据恢复模型训练。维护阶段允许模型忘记过时的知识,并为模型配备最新的知识。维护的模型可以在下一个窗口中用于检测。通过这种方式,KPGNN不断适应传入的数据,以检测新的事件并更新模型的知识。

3.2 Heterogeneous Social Message Modeling

在预处理过程中,我们的目标是:1)充分利用社交数据,从消息中提取不同类型的信息元素,2)对提取的元素进行统一组织,便于进一步处理。为此,我们利用了异构信息网络(HINs) 。HIN是一个包含不止一种类型的节点和边的图。图1 (a)是HIN的一个例子。
在这里插入图片描述

构建异构图:给定一个消息 m i m_i mi,我们从它的文档提取一组命名实体和文字(过滤掉非常常见和非常罕见的单词),提取的元素,以及一组和 m i m_i mi关联的用户和 m i m_i mi本身作为节点添加到HIN。我们在 m i m_i mi和它的边元素之间添加边。 例如,图1 (a),从 m 1 m_1 m1,我们可以提取tweet node m 1 m_1 m1,单词节点包含了fire和tears。 其中用户节点包含了user1和user2。 我们添加了 m 1 m_1 m1和其它节点之间边。我们对所有消息重复相同的过程,合并重复节点。最终,我们得到了一个包含所有信息及其不同类型元素的异构社交图谱。我们表示节点类型,即消息、单词、命名实体和用户分别表示为 m , o , e 和 u m,o,e和u m,o,eu

异构节点类型: 现有的异构gnn[18,37,40,43,44]通常在其模型中保留异构节点类型,以学习所有节点的表示。

消息同构图: 而KPGNN作为一个document-pivot模型,专注于学习消息之间的相关性,因此我们采用了不同的设计,将异构的社交图映射为同质的消息图,如图1 ©所示。同构消息图只包含消息节点,共享一些公共元素的消息之间有边。通过映射,同质消息图保留了异构社交图编码的消息相关性。具体来说,映射过程如下:

在这里插入图片描述

其中,A是同构信息图的邻接矩阵。N是图中的消息总数。 ⋅ i , j ·_{i,j} i,j表示的是i行j列,k表示的是节点类型。 W m k W_{mk} Wmk是异质社会图邻接矩阵的子矩阵,包含了类型m的行和类型k的列。如果消息 m i m_i mi m j m_j mj链接到一些常见类型k节点, [ W m k ⋅ W m k ⊤ ] i , j \left[\boldsymbol{W}_{m k} \cdot \boldsymbol{W}_{m k}^{\top}\right]_{i, j} [WmkWmk]i,j将大于或等于1,并且 A i , j A_{i,j} Ai,j将会等于1.

为了利用数据中的语义和时间信息,我们构造了消息的特征向量,如图1(b)所示。具体而言,文档特征计算为文档中所有单词预训练单词嵌入的平均值。通过对时间戳进行编码来计算时间特征:我们将每个时间戳转换为OLE date,OLE date的分数和整数分量构成一个二维向量。然后,我们执行这两个函数的消息连接。得到的初始特征向量,表示为 X = { x m i ∈ R d ∣ 1 ≤ i ≤ N } } , \left.\boldsymbol{X}=\left\{x_{m_{i}} \in \mathbb{R}^{d} \mid 1 \leq i \leq N\right\}\right\}, X={xmiRd1iN}},其中 x m i x_{m_i} xmi m i m_i mi的初始特征向量,d是维度,是与相应的消息节点关联。我们将齐次消息图表示为 G = ( X , A ) \mathcal{G}=(X,A) G=(X,A)

注意 G \mathcal{G} G是静态的,当新消息块到达进行检测时(如图2第二阶段所示),我们通过插入新消息节点、它们与现有消息节点的链接和他们内部的链接到 G \mathcal{G} G来更新图。 类似地,我们定期从中删除过时的消息节点和与其相关联的边。在第4节中,我们对不同的更新维护策略进行了实证比较。

3.3 Knowledge-Preserving Incremental Message Embedding

  • 3
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
subspace-preserving(保子空间性质)是一个数学概念,在线性代数和数值分析中经常被使用。它是指一个线性变换或者一个算法在转换过程中能够保持原始向量所处的子空间结构不变。 子空间是向量空间的一个重要的概念,它是由向量空间中某些向量的线性组合所构成的。子空间具有一些特定的性质,包括零向量在其中、封闭性和确定性等。 当一个线性变换或者一个算法具有保子空间性质时,它意味着在变换过程中原始向量所处的子空间结构保持不变。换句话说,任意向量在该变换或算法之后仍然可以由原始向量的线性组合表示。 举个例子,假设有一个二维平面上的向量集合,它们构成了一个平面子空间。如果一个线性变换或算法具有保子空间性质,那么经过该变换或算法处理后,原始平面子空间中的向量仍然可以线性组合表示,且在新的向量集合中仍然构成一个平面子空间。 保子空间性质在很多数学和工程应用中都是非常重要的。例如,在信号处理中,当利用线性变换对信号进行处理时,保子空间性质能够确保信号在变换过程中不产生额外的信息丢失。在图像处理中,保子空间性质能够确保图像在压缩和重构过程中能够保持较好的视觉质量。 总之,subspace-preserving(保子空间性质)是指一个线性变换或者一个算法在转换过程中能够保持原始向量所处的子空间结构不变。这个概念在数学和工程应用中具有很大的实用性和重要性。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值