在深度学习领域,一个神秘且强大的概念——自注意力机制(Self-Attention Mechanism),近年来成为了许多突破性成果的幕后英雄。从自然语言处理(NLP)到计算机视觉,自注意力机制正逐渐成为构建高效、强大模型的关键。但它究竟是什么?又是如何工作的?接下来将用通俗易懂的理解解释Transformer的工作原理。
1. 自注意力机制的灵魂:全连接层而非卷积层
自注意力机制的核心思想相当简洁:让模型在处理数据时能够“自我关注”数据中的每一部分,并基于这种内部关注度来改进模型的表现。不同于依赖于卷积层处理数据的传统方法,自注意力机制使用全连接层(也就是线性变换)来实现这一过程。
自注意力机制使用的是全连接层(线性变换)来生成查询、键、值向量,而不是卷积层。卷积层通常用于处理空间数据(如图像),而全连接层更适合处理这种基于注意力的序列任务。
2. 如何实现“自我关注”?
2.1 向量化输入
首先,将输入序列的每个元素(比如,在NLP任务中的每个词)转换为一个固定大小的向量,这些向量可以是嵌入表示,表示为矩阵。
模型将每个输入元素(比如文本中的每个词)转换为一个高维空间中的向量,这个过程通常被称作词嵌入(Word Embedding)。
词嵌入的核心思想是“词汇的意义可以通过它们的上下文来定义”,这与Firth提出的“一个词的含义由它的使用环