ubuntu上的cudnn安装及使用报错解决办法

其他教程教的做法

从官网下载最新安装包

  1. 解压缩:会生成cuda/include和cuda/lib64

  2. 将cuda/include目录中的cudnn.h文件拷贝到/usr/local/cuda-8.0/include/目录下

  3. 将cuda/lib64目录中的库拷贝到/usr/local/cuda-8.0/lib64/目录下;

  4. 将/usr/local/cuda-8.0/lib64/目录下的libcudnn库的权限改为777,执行:

sudo chmod 777 libcudnn*

如果直接复制粘贴不了,记得尝试cp命令,我就是不能直接复制粘贴,用的cp命令实现复制。

但是现在官网Ubuntu只能下载deb版本的安装包

所以现在的做法应该是

下载相应的deb
然后安装

sudo dpkg --install libcudnn7_x.x.x.xxxx+cudaxxx_amd64.deb 
sudo dpkg --install libcudnn7-dev_x.x.x.xxxx+cudaxxx_amd64.deb 
sudo dpkg --install libcudnn7-doc_x.x.x.xxxx+cudaxxx_amd64.deb

若不报错则说明安装成功。

切换到home文件夹下

cd 

复制cuDNN sample到当前用户目录下:

cp -rv /usr/src/cudnn_samples_v7 .

进入cuDNN测试样例程序的路径:

cd cudnn_samples_v7/mnistCUDNN

编译测试程序:

make clean
make -j4

运行测试程序:

./mnistCUDNN

若cuDNN安装正确会出现:

Test passed!

但到这一步,运行theano调用cudnn仍然会显示

Can not use cuDNN on context None: cannot compile with cuDNN. We got this error:
代码某一行: fatal error: cudnn.h: No such file or directory.
Compilation terminated.

仍需要将cudnn.h和相关库复制到cuda文件夹下

首先找到cudnn.h的文件路径

locate cudnn.h

然后拷贝到/usr/local/cuda/文件夹下,我的cuda是10.1版本的,所以是/usr/local/cuda-10.1/

sudo cp cudnn.h所在路径/cudnn.h  /usr/local/cuda-10.1/include/

然后找到libcudnn.so.*拷贝

sudo cp /home/usrname/anaconda3/lib/libcudnn.so /usr/local/cuda-10.1/lib64/
sudo cp /home/usrname/anaconda3/lib/libcudnn.so.7 /usr/local/cuda-10.1/lib64/
sudo cp /home/usrname/anaconda3/lib/libcudnn.so.7.6.0 /usr/local/cuda-10.1/lib64/

/usr/local/cuda-10.1/lib64/目录下的libcudnn依赖的权限改为777,执行:

sudo chmod 777 libcudnn*
### 解决 Ubuntu 18.04 上 Autoware 1.14 编译错误 当在 Ubuntu 18.04 上安装 Autoware 1.14 版本时,可能会遇到各种编译错误。这些错误通常由依赖项缺失、环境变量未设置或软件包版本不兼容引起。 #### 常见的编译错误及其解决方案 #### CMake 配置失败 如果 `CMake` 报告找不到某些库文件,则可能是由于缺少必要的开发工具和库。建议先更新并安装基础构建工具: ```bash sudo apt update && sudo apt upgrade -y sudo apt install -y build-essential cmake git wget curl unzip pkg-config ``` 对于特定于计算机视觉处理所需的库,可以按照以下命令来确保所有必需组件都已就绪[^2]: ```bash sudo apt-get install -y \ libgtk2.0-dev \ libavcodec-dev \ libavformat-dev \ libjpeg-dev \ libtiff5-dev \ libswscale-dev \ libjasper-dev ``` #### ROS 和 Catkin 工具链问题 为了使 Autoware 能够顺利工作,在开始之前应确认已经正确设置了 ROS 环境以及 catkin 构建系统。这包括但不限于安装 Python 的一些辅助模块[^3]: ```bash sudo apt install -y python-catkin-pkg python-rosdep ros-melodic-catkin sudo apt install -y python3-pip python3-colcon-common-extensions python3-setuptools python3-vcstool pip3 install -U setuptools ``` 另外,还需要初始化 rosdep 并同步最新的资源列表以便后续操作能够访问到最新发布的软件包信息: ```bash sudo rosdep init rosdep update ``` #### GPU 支持相关的问题 针对需要 CUDA 加速的应用场景,务必验证 NVIDIA 显卡驱动程序已被正确加载,并且通过 APT 安装了适当版本的 cuDNN 及其配套的 TensorFlow 或 PyTorch 组件。例如,要启用 caffe 使用 GPU 进行加速训练的话,可以通过如下方式成部署[^1]: ```bash sudo apt install caffe-cuda ``` #### 处理具体编译报错提示 面对具体的编译错误消息时,应该仔细阅读其中的内容,特别是那些指出无法找到头文件路径或是链接器未能解析符号的地方。这类情况往往指向某个特定的第三方库尚未被正确引入项目之中。此时可尝试利用 `apt-file search` 来定位所需文件的位置,并据此调整项目的 include path 或 link flags 设置;也可以考虑直接从源码重新编译该外部依赖以获得更好的控制权。 最后提醒一点,保持系统的整体一致性非常重要——即尽量让各个部分所使用的 API/ABI 接口处于同一水平线上,避免因混杂不同年代的技术栈而导致难以预料的行为发生。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值