在 Transformer 模型中,Position-wise Feed-Forward Networks (FFN) 是每个编码器和解码器层中的一个关键组成部分。它的主要作用是在处理上下文关联信息后,进一步对每个位置的表示进行非线性变换和增强,从而提高模型的表达能力。
1. 位置编码与上下文信息
Transformer 模型的核心是自注意力机制(Self-Attention),它可以捕捉序列中不同位置的依赖关系。然而,自注意力机制本质上是对序列中的所有位置进行加权求和,虽然它能够学习到全局的依赖信息,但在每个位置的表示上主要处理的是相对位置的信息。
在这样的背景下,**位置编码(Positional Encoding)**被引入到模型中,帮助捕捉序列中元素的顺序信息。尽管如此,仅有位置编码还不足以在不同位置之间进行更复杂的特征转换,因此需要引入 Position-wise Feed-Forward Networks
来进一步处理信息。
2. Position-wise Feed-Forward Networks 的结构
在每个 Transformer 层中,Position-wise FFN 通常有如下结构:
这实际上是一个两层的全连接神经网络,应用于每个位置的表示上:
-
<