【大模型面试】 transformer里面为什么需要postion-wise feed-forward networks,这一层是在干嘛

在 Transformer 模型中,Position-wise Feed-Forward Networks (FFN) 是每个编码器和解码器层中的一个关键组成部分。它的主要作用是在处理上下文关联信息后,进一步对每个位置的表示进行非线性变换和增强,从而提高模型的表达能力。

1. 位置编码与上下文信息

Transformer 模型的核心是自注意力机制(Self-Attention),它可以捕捉序列中不同位置的依赖关系。然而,自注意力机制本质上是对序列中的所有位置进行加权求和,虽然它能够学习到全局的依赖信息,但在每个位置的表示上主要处理的是相对位置的信息。

在这样的背景下,**位置编码(Positional Encoding)**被引入到模型中,帮助捕捉序列中元素的顺序信息。尽管如此,仅有位置编码还不足以在不同位置之间进行更复杂的特征转换,因此需要引入 Position-wise Feed-Forward Networks 来进一步处理信息。

2. Position-wise Feed-Forward Networks 的结构

在每个 Transformer 层中,Position-wise FFN 通常有如下结构:

在这里插入图片描述

这实际上是一个两层的全连接神经网络,应用于每个位置的表示上:

    <
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值