
| 数据集名称 | 图像数量 | 目标数量 | 卫星 |
|---|---|---|---|
| SSDD/SSDD | 1160 | 2456 | - |
| OpenSARShip | 41 | 11346 | Sentinel-1 |
| AIR-SARShip-1.0 | 31 | 461 | GF-3 |
| SAR-Ship-Dataset | 43819 | 43819 | GF-3、Sentinel-1 |
| HRSID | 5604 | 16951 | - |
1. 光学数据集
1.1 DIOR

“DIOR”是一个用于光学遥感图像目标检测的大规模基准数据集。数据集包含23463个图像和192472个实例,涵盖20个对象类。这20个对象类是飞机、机场、棒球场、篮球场、桥梁、烟囱、水坝、高速公路服务区、高速公路收费站、港口、高尔夫球场、地面田径场、天桥、船舶、体育场、储罐、网球场、火车站、车辆和风磨。
下载地址:http://www.escience.cn/people/gongcheng/DIOR.html
数据论文地址:Object Detection in Optical Remote Sensing Images: A Survey and A New Benchmark
1.2 LEVIR

LEVIR数据集由大量 800 × 600 像素和0.2m〜1.0m /像素的高分辨率Google Earth图像和超过22k的图像组成。LEVIR数据集涵盖了人类居住环境的大多数类型地面特征,例如城市,乡村,山区和海洋。数据集中未考虑冰川,沙漠和戈壁等极端陆地环境。数据集中有3种目标类型:飞机,轮船(包括近海轮船和向海轮船)和油罐。所有图像总共标记了11k个独立边界框,包括4,724架飞机,3,025艘船和3,279个油罐。每个图像的平均目标数量为0.5。
数据下载地址:http://levir.buaa.edu.cn/Code.htm
数据论文地址:Random Access Memories: A New Paradigm for Target Detection in High Resolution Aerial Remote Sensing Images
1.3 DOTA

DOTA是用于航空图像中目标检测的大规模数据集。它可以用于开发和评估航空影像中的物体检测。对于DOTA数据集,它包含来自不同传感器和平台的2806个航拍图像。每个图像的大小在大约800×800到4000×4000像素的范围内,并且包含各种比例,方向和形状的对象。这些DOTA图像由航空影像解释专家分类为15个常见对象类别。完全注释的DOTA图像包含188、282个实例,每个实例都由任意(8自由度)四边形标记。
https://captain-whu.github.io/DOTA/index.html
DOTA: A Large-scale Dataset for Object Detection in Aerial Images
1.4 RSOD

RSOD是一个开放的目标检测数据集,用于遥感图像中的目标检测。数据集包含飞机,油箱,运动场和立交桥,以PASCAL VOC数据集的格式进行标注。
数据集包括4个文件夹,每个文件夹包含一种对象:
1.飞机数据集,446幅图像中的4993架飞机
2.操场,189副图像中的191个操场。
3.立交桥,176副图像中的180座立交桥。
4.油箱,165副图像中的1586个 油箱。
下载地址:https://github.com/RSIA-LIESMARS-WHU/RSOD-Dataset-
数据论文地址:Object Detection in Optical Remote Sensing Images: A Survey and A New Benchmark
1.5 NWPU VHR-10

NWPU VHR-10数据集是仅用于研究的公开提供的10类地理空间物体检测数据集,这十类物体是飞机,轮船,储罐,棒球,网球场,篮球场,地面跑道,港口,桥梁和车辆。此数据集总共包含800幅超高分辨率(VHR)遥感图像,是从Google

最低0.47元/天 解锁文章
7万+

被折叠的 条评论
为什么被折叠?



