参考文献 语言模型 word2vec 循环神经网络:RNN Bi-LSTM LSTM长短期记忆,GRU Seq2seq 注意力

参考文献

知乎链接
[1]基于深度学习的智能问答系统研究

语言模型

统计语言模型和神经网络语言模型。
N-gram 是统计语言模型(用前n个词预测)
CBOW 和 Skip-gram 是神经语言模型

word2vec

CBOW:周围词(one-hot)处理为中心词的类似one-hot表示(每位表示概率)
skip-gram:中心词->周围词的类似one-hot的概率表示。

缺点:一个词一个向量,多义词无解

循环神经网络:RNN

在这里插入图片描述

输入和输出序列必有相同的时间长度
流程:输入一句话的时候(预测最后一个词),从左到右依次输入每一个词,每输入一个词会得到一个激活值,用来预测下一个词。
缺点:只用了上文信息

Bi-LSTM

缺点:一个时刻接一个时刻计算

LSTM长短期记忆,GRU

长短期记忆 LSTM:有 2 个传输状态,一个是tc (cell state)另一个是th (hidden state)。长短期记忆利用门的结构来精确控制加入或移除信息到 cell 状态
GRU:长短时记忆的一种简化结构
缺点:不能够解决长距离依赖的问题。

Seq2seq

在这里插入图片描述
接下来以机器翻译为例,看看如何通过Seq2Seq结构把中文“早上好”翻译成英文“Good morning”:

将“早上好”通过Encoder编码,并将最后 [公式] 时刻的隐藏层状态 [公式] 作为语义向量。
以语义向量为Decoder的 [公式] 状态,同时在 [公式] 时刻输入特殊标识符,开始解码。之后不断的将前一时刻输出作为下一时刻输入进行解码,直接输出 特殊标识符结束。
当然,上述过程只是Seq2Seq结构的一种经典实现方式。与经典RNN结构不同的是,Seq2Seq结构不再要求输入和输出序列有相同的时间长度!

注意力

在Seq2Seq结构中,encoder把所有的输入序列都编码成一个统一的语义向量Context,然后再由Decoder解码。由于context包含原始序列中的所有信息,它的长度就成了限制模型性能的瓶颈。如机器翻译问题,当要翻译的句子较长时,一个Context可能存不下那么多信息,就会造成精度的下降。除此之外,如果按照上述方式实现,只用到了编码器的最后一个隐藏层状态,信息利用率低下。
所以如果要改进Seq2Seq结构,最好的切入角度就是:利用Encoder所有隐藏层状态ht解决Context长度限制问题。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值