深度学习进阶之(一)AutoEncoder

本文深入探讨AutoEncoder的原理、变种及其与PCA的区别。重点介绍了Sparse AutoEncoder、Denoising AutoEncoder等变种,强调它们在数据降维、特征提取和模型鲁棒性提升中的作用。并提供了实际应用案例,展示AutoEncoder在预测用户偏好中的应用。
摘要由CSDN通过智能技术生成

1. AutoEncoder的原理、变种及实现

          AutoEncoder包含输入层、隐含层以及输出层,AutoEncoder原理就是利用BP来进行整个过程,那么如何构建AutoEncoder呢?

1.搭建编码器

2.搭建解码器

3. 定义Loss function

         AutoEncoder主要用来数据去噪、为可视化降维以及构建深层神经网络。

                                         

                                                     

2. AutoEncoder与PCA的区别

      相同点:

         * 降维,作为特征提取器

      不同点:

         * PCA只能线性变换,AutoEncoder可以进行非线性变换

      降维的重点就是保证不要丢失太多的信息,我们使用主成分分析,假设原数据是n,我们把数据从原特征空间变换到新的特征空间,在新的特征空间,我们就把每一个特征维度设置为一个主方向,我们可以把n个主方向按方差从大到小排列,选择前K个维度,但是PCA处理时,假设为2,降维为1,那么我们就会损失一定的数据信息,如果AutoEncoder层数为1时,那么就与PCA是一样的。若为非1层的AutoEncoder的话,我们可以堆叠n个层作为深度学习的预训练,我们可以在编解码之后加上非线性变换,通过减少误差来学习参数, 那么相对于非线性的情况,我们可以学习到更多的结果。对于非线性函数来说,PCA以及AutoEncoder会得到以下两种情况:

                                      

 

 

3. AutoEncoder的变种(一)

3.1 Sparse AutoEncoder

             Sparse AutoEncoder如下图所示:

                                                             

        Sparse中加入L1正则化或者KL散度,我们限制了每次表达的向量更加稀疏,因为稀疏的向量往往更有效。给隐藏的神经元加入稀疏性限制。在现实生活中,也正是有这种表达来满足我们的约束。简单来说,我们希望我们的模型越稀疏越好。这是一个非监督学习的过程,这是生成整个神经网络的预先训练的一种方法,通过初始化神经元来建立一个回归,这个回归来拟合我们的模型。当数据特征较高时,若我们不加稀疏性限制,就会抑制特征提取效果,因为Sparse本身就是一个正则项。详细代码可以参考本人的github:https://github.com/Merlin5417/AE-DAE-SDAE

                       

        增加了稀疏约束后的AutoEncoder的损失函数定义如下:

                                                                         

       KL表示KL散度,p表示网络中神经元的激活程度(若Activation为Sigmoid函数,此值可设为0.05,表示大部分神经元未激活),pj表示第j个神经元的平均激活程度。在此处ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值