深度学习数学基础之全概率公式和贝叶斯公式

深度学习数学基础之全概率公式和贝叶斯公式

全概率公式

在这里插入图片描述

全概率公式是概率论中非常重要的一个概念,它用于计算某个事件发生的概率,特别是当这个事件的发生可以通过多个不同的途径实现时。在您提供的小偷偷钱的例子中,我们可以利用全概率公式来精确计算出小偷偷到一张真钱的概率。

事件定义

设事件 A A A 表示小偷偷到一张真钱。考虑到小偷面前有三位同学,分别是小明、小红和大壮,他们口袋里的钱的情况各不相同。我们定义三个事件 B 1 B_1 B1 B 2 B_2 B2 B 3 B_3 B3,分别表示小偷选择偷小明、小红和大壮的钱。

条件概率和先验概率

对于每个同学,他们钱袋中真假钱的具体情况如下:

  • 小明 ( B 1 B_1 B1): 3张钱,其中2张是真钱。因此,条件概率 P ( A ∣ B 1 ) = 2 3 P(A|B_1) = \frac{2}{3} P(AB1)=32
  • 小红 ( B 2 B_2 B2): 10张钱,全部是真钱。因此,条件概率 P ( A ∣ B 2 ) = 1 P(A|B_2) = 1 P(AB2)=1
  • 大壮 ( B 3 B_3 B3): 21张钱,仅1张是真钱。因此,条件概率 P ( A ∣ B 3 ) = 1 21 P(A|B_3) = \frac{1}{21} P(AB3)=211

假设小偷选择任一同学的概率相等,即 P ( B 1 ) = P ( B 2 ) = P ( B 3 ) = 1 3 P(B_1) = P(B_2) = P(B_3) = \frac{1}{3} P(B1)=P(B2)=P(B3)=31

全概率公式的应用

根据全概率公式,事件 A A A(偷到真钱)的总概率由以下式子给出:
P ( A ) = P ( A ∣ B 1 ) P ( B 1 ) + P ( A ∣ B 2 ) P ( B 2 ) + P ( A ∣ B 3 ) P ( B 3 ) P(A) = P(A|B_1)P(B_1) + P(A|B_2)P(B_2) + P(A|B_3)P(B_3) P(A)=P(AB1)P(B1)+P(AB2)P(B2)+P(AB3)P(B3)
将具体数值代入,得:
P ( A ) = ( 2 3 × 1 3 ) + ( 1 × 1 3 ) + ( 1 21 × 1 3 ) P(A) = \left(\frac{2}{3} \times \frac{1}{3}\right) + \left(1 \times \frac{1}{3}\right) + \left(\frac{1}{21} \times \frac{1}{3}\right) P(A)=(32×31)+(1×31)+(211×31)
P ( A ) = 2 9 + 1 3 + 1 63 P(A) = \frac{2}{9} + \frac{1}{3} + \frac{1}{63} P(A)=92+31+631
P ( A ) = 21 63 + 21 63 + 1 63 = 43 63 P(A) = \frac{21}{63} + \frac{21}{63} + \frac{1}{63} = \frac{43}{63} P(A)=6321+6321+631=6343

结论

通过计算,我们得到小偷在随机选择一个同学后偷到一张真钱的概率是 43 63 \frac{43}{63} 6343 或约 68.25%。这个结果显示了全概率公式在处理此类问题中的强大功能,通过将一个复杂问题分解为更易处理的多个子问题,然后将这些子问题的结果综合起来,得到了整体问题的解答。这种方法的严谨性和逻辑性是处理概率问题的关键。

贝叶斯公式

在这里插入图片描述

贝叶斯公式是概率论中的一个核心概念,它允许我们在已知某事件结果的条件下,重新评估各种原因发生的概率。这种方法特别适用于信息不完全的情况,通过先验知识和新获取的数据来更新我们对事件的认知。

贝叶斯公式的表述

贝叶斯公式可以表示为:
P ( B i ∣ A ) = P ( A ∣ B i ) P ( B i ) P ( A ) P(B_i | A) = \frac{P(A | B_i) P(B_i)}{P(A)} P(BiA)=P(A)P(ABi)P(Bi)
这里:

  • P ( B i ∣ A ) P(B_i | A) P(BiA) 是后验概率,即在事件 A A A 发生后,假设 B i B_i Bi 的条件概率。
  • P ( A ∣ B i ) P(A | B_i) P(ABi) 是条件概率,即在假设 B i B_i Bi 的条件下事件 A A A 发生的概率。
  • P ( B i ) P(B_i) P(Bi) 是先验概率,即在事件 A A A 发生前,我们对 B i B_i Bi 发生的估计。
  • P ( A ) P(A) P(A) 是事件 A A A 的全概率,可以通过全概率公式计算。

应用场景:小偷偷钱问题

假设小偷已经偷到了一张真钱,我们需要计算这张真钱来自于小明的概率。根据问题设定:

  • 事件 A A A:偷到一张真钱。
  • 事件 B 1 B_1 B1:偷的钱来自于小明。

已知:

  • P ( A ∣ B 1 ) = 2 3 P(A | B_1) = \frac{2}{3} P(AB1)=32:假设小偷选择了小明,他偷到真钱的概率。
  • P ( B 1 ) = 1 3 P(B_1) = \frac{1}{3} P(B1)=31:小偷选择偷小明的先验概率。
  • P ( A ) P(A) P(A):之前通过全概率公式计算得到的偷到真钱的总概率为 43 63 \frac{43}{63} 6343
贝叶斯公式计算

使用贝叶斯公式,我们可以计算小明是真钱来源的后验概率:
P ( B 1 ∣ A ) = P ( A ∣ B 1 ) ⋅ P ( B 1 ) P ( A ) = 2 3 ⋅ 1 3 43 63 = 2 9 43 63 = 14 43 P(B_1 | A) = \frac{P(A | B_1) \cdot P(B_1)}{P(A)} = \frac{\frac{2}{3} \cdot \frac{1}{3}}{\frac{43}{63}} = \frac{\frac{2}{9}}{\frac{43}{63}} = \frac{14}{43} P(B1A)=P(A)P(AB1)P(B1)=63433231=634392=4314
这个结果 14 43 ≈ 0.326 \frac{14}{43} \approx 0.326 43140.326,说明在偷到真钱这一结果已知后,偷到的真钱来自小明的概率略低于偷之前估计的 1 3 \frac{1}{3} 31。这表明后验概率与先验概率存在差异,说明贝叶斯更新通过新证据微调了我们的原始概率估计。

结论

通过贝叶斯公式,我们可以看到,即使在一个简单的情境中,后验概率也能提供对问题更深刻的理解和更精确的概率评估。这种从结果反推可能性的方法,不仅增强了我们的分析能力,而且在数据科学、机器学习等领域提供了强大的理论支持,使我们能够在不确定性中做出更有信息的决策。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YRr YRr

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值