ValueState的使用比较简单,方法如下图
- 用ValueStateDescriptor定义ValueState的描述器
- value()方法获取值
- update(T value)方法更新值
需求1:单词3秒未重复出现则输出该单词
import org.apache.flink.api.common.eventtime.SerializableTimestampAssigner;
import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.common.state.ValueState;
import org.apache.flink.api.common.state.ValueStateDescriptor;
import org.apache.flink.api.java.functions.KeySelector;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.KeyedProcessFunction;
import org.apache.flink.streaming.api.functions.source.SourceFunction;
import org.apache.flink.util.Collector;
import java.time.Duration;
import java.util.Random;
public class ValueStateTest {
public static void main(String[] args) throws Exception {
// 单词n秒不出现则输出
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.getConfig().setAutoWatermarkInterval(100l);
DataStreamSource<Tuple2<String, Long>> tuple2DataStreamSource = env.addSource(new SourceFunction<Tuple2<String, Long>>() {
boolean flag = true;
@Override
public void run(SourceContext<Tuple2<String, Long>> ctx) throws Exception {
String[] str = {"王五", "吕子乔", "丽萨", "李四", "张三"};
while (flag) {
int i = new Random().nextInt(4);
Thread.sleep(1000l);
ctx.collect(new Tuple2<String, Long>(str[i], System.currentTimeMillis()));
}
}
@Override
public void cancel() {
flag = false;
}
});
SingleOutputStreamOperator<Tuple2<String, Long>> tuple2SingleOutputStreamOperator = tuple2DataStreamSource.assignTimestampsAndWatermarks(WatermarkStrategy.<Tuple2<String, Long>>forBoundedOutOfOrderness(Duration.ofSeconds(2))
.withTimestampAssigner(new SerializableTimestampAssigner<Tuple2<String, Long>>() {
@Override
public long extractTimestamp(Tuple2<String, Long> stringLongTuple2, long l) {
return stringLongTuple2.f1;
}
}));
tuple2SingleOutputStreamOperator.map(new MapFunction<Tuple2<String,Long>,Tuple2<String,Integer>>(){
@Override
public Tuple2<String, Integer> map(Tuple2<String, Long> stringLongTuple2) throws Exception {
System.out.println("key:" + stringLongTuple2.f0 + " timestamp:" + stringLongTuple2.f1);
return new Tuple2<String,Integer>(stringLongTuple2.f0,1);
}
}).keyBy(new KeySelector<Tuple2<String, Integer>, String>() {
@Override
public String getKey(Tuple2<String, Integer> stringIntegerTuple2) throws Exception {
return stringIntegerTuple2.f0;
}
}).process(new KeyedProcessFunction<String, Tuple2<String, Integer>, Tuple2<String,Long>>() {
ValueState<Long> valueState = null;
@Override
public void open(Configuration parameters) throws Exception {
super.open(parameters);
ValueStateDescriptor<Long> valueStateDescriptor = new ValueStateDescriptor<Long>("valueState",Long.class);
valueState = getRuntimeContext().getState(valueStateDescriptor);
}
@Override
public void processElement(Tuple2<String, Integer> value, Context ctx, Collector<Tuple2<String,Long>> out) throws Exception {
// 获取最后出现的时间戳
Long lastTime = ctx.timestamp();
// 定时时间
Long timerTime = lastTime + (3 * 1000l);
Long stateTime = valueState.value();
// 更新state
valueState.update(timerTime);
// 注册定时器
ctx.timerService().registerEventTimeTimer(timerTime);
}
@Override
public void onTimer(long timestamp, OnTimerContext ctx, Collector<Tuple2<String,Long>> out) throws Exception {
super.onTimer(timestamp, ctx, out);
Long stateTime = valueState.value();
// 如果定时时间=单词最后出现的时间戳+3s,则表明3s内没有出现过相同的单词,发往下游
if(timestamp == stateTime){
out.collect(new Tuple2<String,Long>(ctx.getCurrentKey(),timestamp));
}
}
}).print();
env.execute("value-state");
}
}
需求2:温差超过10度则报警
import org.apache.flink.api.common.eventtime.SerializableTimestampAssigner;
import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.common.state.ValueState;
import org.apache.flink.api.common.state.ValueStateDescriptor;
import org.apache.flink.api.common.typeinfo.TypeHint;
import org.apache.flink.api.common.typeinfo.TypeInformation;
import org.apache.flink.api.java.functions.KeySelector;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.api.java.tuple.Tuple3;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.KeyedProcessFunction;
import org.apache.flink.streaming.api.functions.source.SourceFunction;
import org.apache.flink.util.Collector;
import java.time.Duration;
import java.util.Random;
public class ValueStateTest1 {
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.getConfig().setAutoWatermarkInterval(100l);
DataStreamSource<Tuple3<String, Integer, Long>> tuple2DataStreamSource = env.addSource(new SourceFunction<Tuple3<String, Integer, Long>>() {
boolean flag = true;
@Override
public void run(SourceContext<Tuple3<String, Integer, Long>> ctx) throws Exception {
String[] str = {"水阀1", "水阀2", "水阀3"};
while (flag) {
int i = new Random().nextInt(3);
// 温度
int temperature = new Random().nextInt(100);
Thread.sleep(500l);
// 设备号、温度、事件时间
ctx.collect(new Tuple3<String, Integer, Long>(str[i], temperature, System.currentTimeMillis()));
}
}
@Override
public void cancel() {
flag = false;
}
});
SingleOutputStreamOperator<Tuple3<String, Integer, Long>> tuple2SingleOutputStreamOperator = tuple2DataStreamSource.assignTimestampsAndWatermarks(WatermarkStrategy.<Tuple3<String, Integer, Long>>forBoundedOutOfOrderness(Duration.ofSeconds(2))
.withTimestampAssigner(new SerializableTimestampAssigner<Tuple3<String, Integer, Long>>() {
@Override
public long extractTimestamp(Tuple3<String, Integer, Long> stringIntegerLongTuple3, long l) {
return stringIntegerLongTuple3.f2;
}
}));
tuple2SingleOutputStreamOperator.map(new MapFunction<Tuple3<String, Integer, Long>,Tuple2<String,Integer>>(){
@Override
public Tuple2<String, Integer> map(Tuple3<String, Integer, Long> stringLongTuple2) throws Exception {
System.out.println("key:" + stringLongTuple2.f0 + " tempertaur:" + stringLongTuple2.f1);
return new Tuple2<String,Integer>(stringLongTuple2.f0,stringLongTuple2.f1);
}
}).keyBy(new KeySelector<Tuple2<String, Integer>, String>() {
@Override
public String getKey(Tuple2<String, Integer> stringIntegerTuple2) throws Exception {
return stringIntegerTuple2.f0;
}
}).process(new KeyedProcessFunction<String, Tuple2<String, Integer>, Tuple3<String,Integer,Integer>>() {
ValueState<Integer> valueState = null;
@Override
public void open(Configuration parameters) throws Exception {
super.open(parameters);
// 设备号、上次温度、本次温度
ValueStateDescriptor<Integer> valueStateDescriptor = new ValueStateDescriptor("valueState", Integer.class);
valueState = getRuntimeContext().getState(valueStateDescriptor);
}
@Override
public void processElement(Tuple2<String, Integer> value, Context ctx, Collector<Tuple3<String, Integer, Integer>> out) throws Exception {
// 初始化
if(valueState.value() == null){
valueState.update(Integer.MIN_VALUE);
}
//获取上次温度
int lastTemper = valueState.value();
// 如果温差大于等于10,输出
if(Math.abs(value.f1 - lastTemper) >= 10){
out.collect(new Tuple3<String,Integer, Integer>(value.f0,lastTemper,value.f1));
}
// 更新状态
valueState.update(value.f1);
}
}).print();
env.execute("value-state");
}
}