3blue1brown线性代数系列学习笔记01-点积和对偶性

这篇博客探讨了线性代数中的点积概念,从几何和对偶性的角度进行深入解析。文章指出点积可以通过线性变换理解,特别是作为投影到特定数轴的变换。作者解释了对偶性如何连接向量与其定义的线性变换,并讨论了不同书籍中点积定义的差异,强调正确理解点积对于线性代数的重要性。
摘要由CSDN通过智能技术生成

线性代数系列学习笔记 - 点积和对偶性

定义点积(dot product):
v ⃗ ⋅ w ⃗ = [ v 1 v 2 v 3 ] ⋅ [ w 1 w 2 w 3 ] = v 1 w 1 + v 2 w 2 + v 3 w 3 \vec{v} \cdot \vec{w} = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ \end{bmatrix} \cdot \begin{bmatrix} w_1 \\ w_2 \\ w_3 \\ \end{bmatrix} = v_1w_1+v_2w_2+v_3w_3 v w =v1v2v3w1w2w3=v1w1+v2w2+v3w3

首先作者提及我们可能对点积这个概念有一定的理解,知道它可以通过做投影(projection)后相乘的方式被理解。但是为何按照上述的定义,在数学操作层面,先把对应元素配对相乘后再相加得到的一个数值,会恰恰同几何学上的一个特殊的投影变换操作(transformation)对应起来呢?

作者提醒我们从对偶性(duality)的角度去看待这个问题,由此也引出了所谓的点积的两重性的概念。

正文

不同与数学书上的概念性解读:
L ( a v ⃗ + b w ⃗ ) = a L ( v ⃗ ) + b L ( w ⃗ ) L(a\vec{v}+b\vec{w})=aL(\vec{v})+bL(\vec{w}) L(av +bw )=aL(v )+bL(w )
作者提出先从直观上理解什么是线性变换(linear transformation):

假设存在一个向量空间为二维平面,任意找一条直线,假若一个函数能把其上均匀分布(evenly spaced)的一系列点(也即是向量),都最终输出为一条新的直线,且对应的一系列点之间的距离也是均匀分布的,那么这个函数(变换)就是一个将二维输入转换为一维输出的线性变换。

事实上,只需知道变换 L L L i ^ \hat{i} i^ j ^ \hat{j} j^ 分别映射为哪两个数值,以这两个数值构成的 1 × 2 1 \times 2 1×2 矩阵就完全表示了该变换。那么,任意给定二维平面中的向量 u ⃗ \vec{u} u ,都可以由下式:
[ L ( i ^ ) L ( j ^ ) ] ⏞ T r a n s f o r m [ u 1 u 2 ] ⏟ V e c t o r = L ( i ^ ) ⋅ u 1 + L ( j ^ ) ⋅ u 2 \overbrace{ \begin{bmatrix} L(\hat{i}) & L(\hat{j}) \end{bmatrix} }^{Transform} \underbrace{ \begin{bmatrix} u_1 \\ u_2 \\ \end{bmatrix} }_{Vector}= L(\hat{i}) \cdot u_1 + L(\hat{j}) \cdot u_2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值