scipy中 插值函数splrep与interp1d比较

参考:https://www.codenong.com/46637605/

它们在内部都返回相同的样条,尽管内部实现方式不同(与几乎所有Fortran代码的splrep相比,interp1d是更新的并且具有更大的Python代码百分比)。"二次方"的含义与2度相同,"三次方"的含义与3度相同。一些区别:

  • splrep及其紧密相对的UnivariateSpline是功能更丰富的样条构造例程;它们允许创建非插值样条曲线的平滑参数。
  • 如果不需要平滑,则interp1d可能更易于使用。

无论如何,这都不是SciPy中唯一的冗余功能实例。添加了新的方法和参数,但保留了旧方法和参数以实现向后兼容。

历史记录:在较旧的SciPy版本(例如0.15.1)中,interp1d返回的样条线与splrep相比质量较低(此答案的第一版基于0.15.1)。在当前版本0.19.1中,不再存在此问题:都返回相同的样条曲线。这是一个示范:

import numpy as np
from scipy.interpolate import interp1d, splrep, splev

x = np.linspace(0, 6, 7)
y = np.array([3, 1, 4, 1, 5, 5, 2])    # some data
xx = np.linspace(0, 6, 100)            # evaluation points  

y1 = interp1d(x, y, kind='cubic')(xx)
y2 = splev(xx, splrep(x, y, k=3))
print(np.abs(y1-y2).max())

y1 = interp1d(x, y, kind='quadratic')(xx)
y2 = splev(xx, splrep(x, y, k=2))
print(np.abs(y1-y2).max())

输出显示,这两个例程在典型的数字误差范围内一致。

2.6645352591e-15
1.7763568394e-15

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值