GEE:作物分类和面积统计

这篇博客介绍了如何利用Google Earth Engine(GEE)进行作物分类,特别是玉米种植区的识别。通过Sentinel-2遥感数据,结合分类和回归树(CART)、随机森林(RF)算法进行分析,验证集准确率达到74.9%。最终,计算得出约165,338平方千米的玉米种植面积,但需注意结果的误差和验证。" 82637830,7896110,jQuery Tokeninput:多功能自动完成搜索,"['javascript', 'php', 'json', 'jQuery', '前端开发']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

随着人口不断增长,全球粮食需求也在不断增加,农作物的种植面积成为了一个关键的问题。在这个背景下,使用遥感数据进行作物分类和面积估计成为了一个重要的任务。Google Earth Engine是一个强大的工具,可以快速处理大量的遥感数据,支持用户进行作物分类和面积估计等分析任务。

在这篇博客中,我们将介绍如何使用Google Earth Engine进行作物分类和面积估计。我们将以玉米为例进行讲解。

玉米种植区分类结果如下图所示,

在这里插入图片描述



一、背景

复杂地貌中的土地覆盖分类受到作物/植被类型短距离转换的限制,特别是在小农户耕作系统中。地球观测图像的可用性和易获取性不断增加,为评估土地覆盖状态和监测变化提供了重要机会,但要实现这种能力,必须有相关地面真实数据来校准和验证分类算法。在撒哈拉以南非洲农耕系统中,所需的具有空间明确性的地面真实数据通常不可获得,这限制了开发相关分析工具以监测农田动态或生成[近]实时农耕系统见解。本教程旨在为有兴趣在Google Earth Engine环境中实施土地覆盖分类例程的用户提供快速指南,使用地面真实数据和可用的Sentinel-2 TOA光谱波段。目标是提供一

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

_养乐多_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值