Google Earth Engine(GEE)—— 快速进行农田作物土地分类和面积统计

本教程介绍了如何在Google Earth Engine(GEE)环境中使用Sentinel-2图像,结合地面实况数据,利用CART和随机森林分类算法对农田进行土地覆盖分类。通过对比,发现随机森林分类在准确性上更优。此工作流程适用于快速获取农田如玉米等作物的分类见解,特别适合缺乏空间显式地面实况数据的地区,如撒哈拉以南非洲。
摘要由CSDN通过智能技术生成

复杂景观中的土地覆盖分类受到作物/植被类型固有的短距离转变的限制,尤其是在小农耕作系统中。地球观测图像的可用性和可访问性不断提高,为评估状态和监测土地覆盖变化提供了重要机会,但解锁这种能力取决于相关地面实况数据的可用性,以校准和验证分类算法。撒哈拉以南非洲农业系统通常无法获得急需的空间显式地面实况数据,这限制了相关分析工具的开发,以监测农田动态或对农业系统产生 [近] 实时洞察。本教程是为有兴趣在 Google 地球引擎环境中使用地面实况数据和可用的 Sentinel-2 TOA 光谱带实施土地覆盖分类例程的用户提供的快速指南。目标是提供一个易于实施的工作流程,研究人员和分析师可以对其进行调整以快速对农田进行分类。随着越来越多的努力投入到在国家和区域层面收集空间丰富的地理参考数据,本教程可用于生成对玉米和其他作物类型的即时/及时见解。

利用选好的样本点,进行分类,这里使用了cart 分类和随机森林分类,最终结果,随机森林分类的结果更加准确。函数:

ee.Classifier.smileCart(maxNodesminLeafPopulation)

Creates an empty CART classifier. See:

"Classification and Regression Trees,"

L. Breiman, J. Friedman, R

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此星光明

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值