Google Earth Engine(GEE)——农田的快速分类

本教程介绍了如何在Google Earth Engine (GEE)中利用Sentinel-2数据,通过CART和RF算法进行农田(玉米与非玉米)的二元分类。尽管受限于特定区域的地面实况数据,但该工作流程为研究人员提供了一个可快速实施的分类方法,以了解农作物覆盖情况。结果表明RF分类器在验证阶段的准确性优于CART。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

背景

复杂景观中的土地覆盖分类受到作物/植被类型固有的短距离过渡的限制,特别是在小农耕作系统中。地球观测图像的可用性和可访问性的增加为评估状态和监测土地覆盖变化提供了重要机会,但解锁这种能力取决于相关地面实况数据的可用性,以校准和验证分类算法。在撒哈拉以南非洲的农业系统中,通常无法获得急需的空间明确的地面实况数据,这限制了相关分析工具的开发,以监测农田动态或生成对农业系统的[近]实时洞察。本教程是为有兴趣使用地面实况数据和可用的 Sentinel-2 TOA 光谱带在 Google Earth Engine 环境中实施土地覆盖分类程序的用户提供的快速指南。目标是提供一个易于实施的工作流程,研究人员和分析师可以对其进行调整,以快速对农田进行分类。随着在国家和区域级别收集空间丰富的地理参考数据方面投入更多的精力,本教程可用于立即/及时地了解玉米和其他作物类型。

警告

### 使用 Google Earth Engine 获取和处理作物分布数据 为了有效地获取并处理作物分布数据,在 Google Earth Engine (GEE) 中可以采用多种方法和技术来实现这一目标。具体来说: #### 数据源的选择 对于作物分布的研究,可以选择 Sentinel 卫星系列作为主要的数据来源之一[^1]。这类卫星提供了高频率的时间序列观测能力以及较高的空间分辨率,非常适合用于监测地面覆盖变化。 #### 预处理阶段 在正式开始分析之前,通常需要对原始影像执行一系列预处理操作以提高后续分类精度。这包括但不限于大气校正、云层检测与去除等措施。例如,可以通过 GEE 自带的功能或者调用外部 API 来完成这些任务。 #### 图像分类技术的应用 一旦完成了必要的预处理工作,则可以根据研究需求选用合适的图像分类算法来进行最终的目标识别。常见的做法是从训练样本集中学习特征模式,并将其应用于整个区域内的未知像素上。支持向量机(SVM),随机森林(Random Forests),决策树(Decision Trees)都是常用的机器学习模型选项;另外还有深度卷积神经网络(CNN)这样的高级工具可供尝试。 #### 利用现有数据集辅助建模 除了直接依赖于光学遥感影像外,还可以考虑引入其他类型的补充资料帮助构建更精确的地图。比如提到的由 NASA 支持开发的 GFSAD 全球农田范围分布数据库就非常适合作为此类项目的参考资料[^2]。该集合不仅涵盖了广泛的地理范围而且具备良好的时间连续性,能够显著增强结果的有效性和可靠性。 ```javascript // JavaScript Code Example for loading and visualizing crop distribution data using GEE. var dataset = ee.ImageCollection('COPERNICUS/S2') .filterDate('2023-01-01', '2023-12-31'); print(dataset); Map.addLayer(dataset, {bands: ['B4', 'B3', 'B2'], max: 0.3}, 'True Color Image'); ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此星光明

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值