特征提取网络
文章平均质量分 52
rrr2
这个作者很懒,什么都没留下…
展开
-
【特征提取网络】|SENet
2017卷积神经网络在很多领域上都取得了巨大的突破。卷积核作为卷积神经网络的核心,它使网络能够通过融合每一层的局部感受野内的空间(spatial)和通道信息(channel-wise)来构建信息特征。卷积神经网络由一系列卷积层、非线性层和下采样层构成,这样它们能够从理论全局感受野上去捕获图像的特征来进行图像的描述。计算机视觉研究的一个中心主题是寻找更强大的表示,捕捉图像中对给定任务最显著的属性,从而提高性能。最近的研究表明,CNN产生的特征表示可以通过将学习机制集成到网络中来加强,这有助于捕捉特征之间的空间原创 2022-06-20 10:05:37 · 5151 阅读 · 0 评论 -
【CNN】感受野上下文信息利用dilated conv空洞卷积
Contextual Convolutional Neural Networks我们提出了⽤于视觉识别的上下⽂卷积。CoConv是标准卷积的直接替代,标准卷积是卷积神经⽹络的核⼼组成部分。与标准卷积相⽐,CoConv隐含地具有合并上下⽂信息的能⼒,同时保持相似数量的参数和计算成本。CoConv受到神经科学研究的启发,这些研究表明(I)神经元,甚⾄来⾃初级视觉⽪层(V1区)的神经元,都参与了上下⽂线索的检测,并且(ii)视觉神经元的活动可以受到完全置于其理论感受野之外的刺激的影响。⼀⽅⾯,我们将CoCon原创 2022-06-18 09:31:35 · 605 阅读 · 0 评论 -
[CNN]|CNN与Transformer区别
论文题目:Do Vision Transformers See Like Convolutional Neural Networks?论文链接:http://arxiv.org/abs/2108.08810Transformer 处理图像时获取的特征是否和之前主流的 CNN 有所区别?基于这样的动机,Google用Centered Kernel Alignment (CKA)对ResNet和ViT的一些关键层进行了检验。首先了解一下CKA这种方法。CKA是Google在2019年提出的,用于衡量神经网络原创 2022-06-08 20:12:56 · 5697 阅读 · 0 评论 -
[CNN]|平移不变性
输入到CNN中的图像为什么不具有平移不变性^Why do deep convolutional networks generalize so poorly to small image transformations? https://arxiv.org/pdf/1805.12177.pdf^Making Convolutional Networks Shift-Invariant Again https://arxiv.org/pdf/1904.11486v1.pdf上面论证了CNN在架构上无法保证平转载 2022-06-08 11:45:57 · 156 阅读 · 0 评论 -
【CNN】|How much position information do convolutional neural networks encode?
ICLR2020CNN提取的特征中是否含有位置信息CNN隐性的编码了位置信息,并且随着网络层数的增加和卷积核的增加,即感受野的增加,能够更好的编码位置信息。其中,这个位置信息是由zero-padding造成的,图像边缘的zero-padding提供了图像的边界信息。本来,网络是不知道每个像素点或者特征点的位置。但是,通过padding的zero,提供给模型一个相对位置信息,知道每个特征点距离zero边界的距离信息。在有zero-padding的情况下,基于VGG和ResNet的模型都可以预测比较合理的位置相原创 2022-06-08 11:44:37 · 410 阅读 · 0 评论 -
【特征提取网络】|ResNeXt
思想来源现代的网络设计中通常会次堆叠类似结构,如VGG,Inception,Resnet等,从而减少网络中超参数的数量,简化网络设计。Inception使用了split-transform-merge策略,即先将输入分成几部分,然后分别做不同的运算,最后再合并到一起。这样可以在保持模型表达能力的情况下降低运算代价。但是Inception的结构还是过于复杂了,人工设计的痕迹太重了。然后,站得更高,分析了神经网络的标准范式就符合这样的split-transform-merge模式。以一个最简单的普通神经原创 2022-03-26 09:40:19 · 2340 阅读 · 0 评论