模型剪枝
文章平均质量分 72
rrr2
这个作者很懒,什么都没留下…
展开
-
【模型剪枝】| yolov5 模型分析及剪枝
其中的add属性很重要,决定了是否有shortcut,其实在yolov5的backbone中的Bottleneck都是有shortcut的,在head中的Bottleneck都没有shortcut。255是3×(80+5),对应3个anchor, 80个类别,使用bce做二分类判断是否为当前类别,4个坐标预测,1个是判断是否为目标或者背景。先通过一个Conv,然后分别进行不同kernel的pooling,3个pooling和输入拼接,在通过一个Conv。拼接层,用于拼接之前的层,例如。原创 2022-09-05 15:48:31 · 2062 阅读 · 0 评论 -
【模型剪枝】|Learning Efficient Convolutional Networks through Network Slimming
作用对象:BN层(和不重要的通道)作用方式: imposes sparsity-induced regularization on the scaling factors(比例因子)通过对批量归一化(BN)层中的缩放因子强加L1正则化将BN缩放因子的值逼近零,因为每个缩放因子对应于特定的卷积通道(或完全连接的层中的神经元),使得我们能够识别不重要的通道。这有助于在随后的步骤中进行通道层次的修剪。原创 2022-08-20 11:09:17 · 570 阅读 · 0 评论 -
【模型剪枝】|Pruning Convolutional Neural Networks for Resource Efficient Inference
https://github.com/jacobgil/pytorch-pruning剪枝之后的VGG准确率从98.7% 掉到97.5%.网络大小从 538 MB压缩到 150 MB.在i7 CPU上,对一张图的推断时间从 0.78 减少为 0.277 s,几乎是3倍加速。裁剪filter的依据是:用Taylor展开来近似pruning的优化问题。需要注意的是,裁剪某一层的filter后,下一层的weight也需要更新。...原创 2021-04-05 08:31:53 · 572 阅读 · 0 评论 -
【模型剪枝】|论文笔记 Optimal Brain Damage
1 摘要通过从网络中删除不重要的权重,可以有更好的泛化能力、需求更少的训练样本、更少的学习或分类时间。本文的基础思想是使用二阶导数将一个训练好的网络,删除一半甚至一半以上的权重,最终会和原来的网络性能一样好,甚至更好。最好的泛化能力是在训练误差和网络复杂度平衡的时候。2 介绍达到这种平衡的一种技术是最小化由两部分组成(原始的训练误差+网络复杂度的度量)的损失函数。复杂度评估方法包括VC维度,描述长度、还有一个历史悠久的方法是:自由参数中的非零参数数量,这个方法也是本文选用的方法。在很多统计推理的文原创 2021-04-03 16:39:08 · 1574 阅读 · 4 评论 -
模型剪枝
https://blog.csdn.net/jacke121/article/details/79450321转载 2019-07-19 17:38:57 · 317 阅读 · 0 评论 -
yolov3剪枝
refhttps://blog.csdn.net/jacke121/article/details/94863687转载 2019-10-21 21:37:58 · 651 阅读 · 0 评论