mioj发糖果

小米oj

刷一下动态规划的经典题型,M个苹果放进N个盘子,一共有多少放法。

发糖果


描述
将 M 个同样的糖果放在 N 个同样的篮子里,允许有的篮子空着不放,共有多少种不同的分法? 比如,把 7 个糖果放在 3 个篮子里,共有 8 种分法(每个数表示篮子中放的糖果数,数的个数为篮子数): 1 1 5 1 2 4 1 3 3 2 2 3 2 5 0 3 4 0 6 1 0 7 0 0注意:相同的分布,顺序不同也只算作一种分法,如 7 0 0、0 7 0 和 0 0 7 只算作一种。


输入

输入包含二个正整数 M 和 N,以(,)分开,M 表示有几个同样的糖果,N 表示有几个同样的篮子 M与N范围:1 <= M,N <= 100。


输出

输出一个正整数 K,表示有多少种分法。


解题思路

这个题是非常经典的动态规划问题我们把这个问题分成很多种情况

  1. 最特殊的一个情况 是当没有苹果或者是只有一个盘子的时候
  2. 当盘子数比苹果数多的时候,此时若减去N-M个盘子,结果不变
  3. 当盘子数小于等于苹果时,分两种情况,当有盘子空着的时候:和减去一个盘子后分类的总数是一样的,当没有盘子空着的时候:每个盘子至少先放一个,此时和每个盘子减去一个苹果后的情况是一样的。那么此项就是这两种情况的加和。

#include "stdio.h"
#include "stdlib.h"

int s(int m, int n)
{
	if (m == 0 || n == 1)//一个盘子或者没有苹果的时候只有一种
		return 1;
	if (n > m)//如果盘子数目多于苹果数目,那么盘子数和苹果树一样也是相同的结果
		return s(m, m);
	if (n <= m)//剩下的情况分为有盘子空着和没盘子空着
		return s(m, n - 1) + s(m - n, n);
	return 0;
}

//找最先到达终点的点
int main()
{
	int a = 0, b = 0;
	scanf("%d ,%d",&a,&b);
	printf("%d  ", s(a, b));
	return 0;

}

这个题目算是一个比较经典的动态规划的题目。

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值