深度强化学习算法(一)(附带MATLAB程序)

       深度强化学习(Deep Reinforcement Learning, DRL)结合了深度学习和强化学习的优点,能够处理具有高维状态和动作空间的复杂任务。它的核心思想是利用深度神经网络来逼近强化学习中的策略函数和价值函数,从而提高学习能力和决策效率。

一、关键算法分类

1.1 深度 Q 网络(Deep Q-Network, DQN)
  • 概念:将 Q 学习(一个值函数方法)与深度神经网络结合,用于近似 Q 值函数。
  • 特点:使用经验回放和固定 Q 目标网络来稳定训练过程。
  • 应用:成功应用于 Atari 游戏等环境。
 1.2 双重 Q 学习(Double Q-Learning)
  • 概念:解决 DQN 中 Q 值过估计的问题,通过引入两个 Q 网络来减少过估计。
  • 特点:使用两个独立的 Q 网络交替更新,以减少 Q 值的过高估计。
1.3 优先经验回放(Prioritized Experience Replay)
  • 概念:对经验回放进行优先级排序,以更频繁地训练那些“重要”的样本。
  • 特点:提高了训练的效率和稳定性。
1.4 深度确定性策略梯度(Deep Deterministic Policy Gradient, DDPG)
  • 概念:适用于连续动作空间的策略梯度算法。
  • 特点:使用策略网络和价值网络来逼近策略和价值函数,并利用经验回放和目标网络来稳定训练。
1.5策略梯度方法(Policy Gradient Methods)
  • 概念:直接优化策略函数,通过梯度上升来最大化预期累积回报。
  • 特点:适合处理大规模或连续动作空间。
1.6近端策略优化(Proximal Policy Optimization, PPO)
  • 概念:通过引入一个“剪切”操作来限制每次策略更新的幅度,确保训练稳定。
  • 特点:简单且有效,广泛应用于各种任务。
1.7演员-评论家方法(Actor-Critic Methods)
  • 概念:结合了策略优化(演员)和价值函数(评论家)的方法。
  • 特点:演员负责更新策略,而评论家负责估计价值函数,用于指导演员更新策略。

二、深度 Q 网络(DQN)算法推导

2.1 深度 Q 网络(Deep Q-Network, DQN)推导

       深度 Q 网络(DQN)是一种将深度学习与 Q 学习结合的方法,用于处理具有高维状态空间的强化学习问题。以下是 DQN 的公式推导过程的详细介绍:

2.1.1 Q 学习的基本概念

       Q 学习旨在通过学习 Q 函数Q\left ( s,a \right ),即在状态 s 下采取动作 a 的预期回报,来找到最优策略。Q 函数的更新公式是:

Q\left ( s,a \right )\leftarrow Q\left ( s,a \right )+\alpha \left [ r+\gamma max_{​{a}'}Q\left ( {s}',{a}' \right ) -Q\left ( s,a \right )\right ]

其中:

  • \alpha 是学习率。
  • r是在状态 s 下采取动作 a 得到的即时奖励。
  • \gamma 是折扣因子。
  • {s}'是执行动作 a 后转移到的新状态。
  • \gamma max_{​{a}'}Q\left ( {s}',{a}' \right )是在新状态 {s}'下的最大 Q 值。
2.1.2 Q函数近似

       在处理高维状态空间时,直接存储 Q 值变得不可行,因此使用函数逼近来估计 Q 函数。我们用深度神经网络 Q\left ( s,a;\theta \right )来逼近 Q 函数,其中 \theta 是网络的参数。

2.1.3 损失函数定义

       为了训练深度 Q 网络,我们定义损失函数L\left ( \theta \right )来衡量网络的预测值与目标值之间的差距。目标 Q 值的计算公式为:

y=r+\gamma max_{​{a}'}Q\left ( {s}',{a}' ;\theta ^{-}\right )

       其中\theta ^{-}是目标网络的参数。目标网络是一个延迟更新的网络,用来稳定训练过程。

       损失函数L\left ( \theta \right )定义为实际 Q 值和目标 Q 值之间的均方差(Mean Squared Error, MSE):

L\left ( \theta \right )=MSE\left [\left ( y-Q\left ( s,a;\theta \right )\right ) ^{2}\right ]

2.1.4 经验回收

       为了提高样本效率,DQN 使用经验回放(Experience Replay)来打破数据之间的相关性。我们存储经历的状态、动作、奖励和下一个状态的四元组 \left ( s,a,r ,{s}'\right ) 在经验回放缓冲区中,并从中随机采样来训练网络。

2.1.5 更新过程

       每次从经验回放缓冲区中采样一批四元组 \left \{ \left ( s_{i},a_{i} ,r_{i},{s}'_{i}\right ) \right \}后,我们计算目标 Q 值y_{i}​ 为:

y_{i}=r_{i}+\gamma max_{​{a}'}Q\left ( {s}'_{i},{a}' ;\theta ^{-}\right )

        然后,通过最小化以下目标函数来更新 Q 网络的参数 \theta

minimize\sum _{i}\left ( \left ( y_{i}-Q\left ( s_{i} ,a_{i};\theta \right ) \right )^{2} \right )

2.2算法步骤
  • 初始化 Q 网络和目标网络的参数 \theta\theta ^{-}
  • 初始化经验回放缓冲区。
  • 对于每个训练步骤:
    1. 从环境中获得当前状态 s。
    2. 根据\varepsilon -贪婪策略选择动作 a。
    3. 执行动作 a,观察奖励 r和下一个状态 {s}'
    4. 将四元组 \left ( s,a,r,{s}' \right )存储到经验回放缓冲区中。
    5. 从经验回放缓冲区中随机采样一批四元组。
    6. 计算目标 Q 值y_{i}
    7. 执行梯度下降以最小化损失函数 L\left ( \theta \right ) 并更新 Q 网络的参数 θ\thetaθ。
    8. 每隔一定步数,将 Q 网络的参数复制到目标网络。
  • 重复步骤 3 直到收敛。

三、算法模拟程序

       要在 MATLAB 中实现深度 Q 网络(DQN),你需要遵循几个关键步骤,包括环境设置、网络定义、训练过程和评估。下面是一个简单的 MATLAB 示例代码,演示了如何使用深度 Q 网络解决一个基本的环境问题。我们将使用 MATLAB 的 Reinforcement Learning Toolbox,它提供了强大的工具来实现和训练 DQN。

3.1 环境定义

       首先,定义一个环境。为了演示,我们使用一个简单的自定义环境。实际应用中,你可能需要根据具体问题定义环境。

classdef SimpleEnv < rl.env.MATLABEnvironment
    properties
        % Define environment properties
        State
        Action
        Reward
        Done
    end
    
    properties
        % Define environment dynamics
        NumStates = 1;
        NumActions = 2;
        MaxSteps = 10;
        CurrentStep = 0;
    end
    
    methods
        function this = SimpleEnv()
            % Initialize environment
            ObservationInfo = rlNumericSpec([this.NumStates 1]);
            ActionInfo = rlFiniteSetSpec([1 2]);
            this = this@rl.env.MATLABEnvironment(ObservationInfo, ActionInfo);
        end
        
        function [nextObs, reward, isDone, log] = step(this, action)
            % Define the environment dynamics and rewards
            this.CurrentStep = this.CurrentStep + 1;
            if action == 1
                reward = 1; % Example reward
            else
                reward = -1;
            end
            
            if this.CurrentStep >= this.MaxSteps
                isDone = true;
            else
                isDone = false;
            end
            
            nextObs = rand(1,1); % Example next state
            log = [];
        end
        
        function reset(this)
            % Reset environment
            this.CurrentStep = 0;
            this.State = rand(1,1); % Example initial state
        end
    end
end
3.2 DQN 网络定义

       定义 Q 网络。以下是一个简单的 DQN 网络示例。

statePath = [
    imageInputLayer([1 1 1], 'Normalization', 'none', 'Name', 'state')
    fullyConnectedLayer(24, 'Name', 'fc1')
    reluLayer('Name', 'relu1')
    fullyConnectedLayer(24, 'Name', 'fc2')
    reluLayer('Name', 'relu2')
    fullyConnectedLayer(2, 'Name', 'output')
    regressionLayer('Name', 'output')];

dqnNet = layerGraph(statePath);
3.3创建 DQN 代理

        设置 DQN 代理的参数,包括网络、学习率、折扣因子等。

% Define the network
qNet = dqnNet;

% Define the options for the agent
agentOpts = rlDQNAgentOptions(...
    'TargetNetworkUpdateFrequency', 4, ...
    'ExperienceBufferLength', 1e6, ...
    'MiniBatchSize', 64, ...
    'DiscountFactor', 0.99, ...
    'Optimizer', rlOptimizerOptions('Adam', 'LearnRate', 1e-3));

% Create the DQN agent
agent = rlDQNAgent(qNet, agentOpts);
3.4训练 DQN 代理

       设置训练选项并开始训练。

% Create the environment
env = SimpleEnv();

% Define training options
trainOpts = rlTrainingOptions(...
    'MaxEpisodes', 1000, ...
    'MaxStepsPerEpisode', env.MaxSteps, ...
    'Verbose', true, ...
    'Plots', 'training-progress');

% Train the agent
trainingStats = train(agent, env, trainOpts);
3.5评估和测试
% Test the agent
numTests = 10;
for i = 1:numTests
    obs = reset(env);
    done = false;
    totalReward = 0;
    while ~done
        [action, ~] = getAction(agent, obs);
        [obs, reward, done, ~] = step(env, action);
        totalReward = totalReward + reward;
    end
    fprintf('Test %d: Total Reward = %f\n', i, totalReward);
end

四、总结

        DQN 将 Q 学习与深度神经网络结合,通过深度神经网络来逼近 Q 函数,并使用经验回放和目标网络来提高训练的稳定性和效率。这些创新使 DQN 能够成功应用于复杂的任务和高维状态空间中。DQN遇到的发展与调整如下

(1)深度强化学习通常需要大量的训练样本,如何提高样本效率是一个重要研究方向。

(2)算法的稳定性和决策过程的可解释性仍然是挑战。

(3)如何使算法具备更强的通用性和迁移能力,以应对不同环境和任务。

深度强化学习是一个快速发展的领域,新的算法和技术不断涌现,推动着人工智能的发展。

  • 12
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值