牛顿迭代
文章平均质量分 52
DZYO
Never stop
展开
-
BZOJ3625: [Codeforces Round #250]小朋友和二叉树(OGF+牛顿迭代)
传送门 题解: 看到这种二叉树的题第一反应就是类似卡特兰数的递推。或者另外一种直观的想法是看成一个点和两边的二叉树的拼接,注意这里不带标号。 那么很简单了,对于点和二叉树分别构造OGF:g(x),f(x)OGF:g(x),f(x),那么: f=gf2+1f=gf^2+1 解二次方程: f=21±1−g2−−−−−√f=\frac{2}{1\pm \sqrt{1-g^2}} 舍去减的根原创 2018-01-21 22:22:43 · 687 阅读 · 0 评论 -
COGS 2189. [HZOI 2015] 帕秋莉的超级多项式(牛顿迭代)
传送门题意: 求:G(x)=(1+ln(1+1exp(∫1F(x)√)))kG(x)=(1+ \ln (1+\frac{1}{exp(\int \frac{1}{\sqrt{F(x)}})}))^k题解:依次进行牛顿迭代即可。注意多项式kk次方不需要快速幂: lnG(x)=ln(F(x)k)=klnF(x)\ln G(x)=\ln (F(x)^k) =k \ln F(x) 多项式再expexp原创 2018-01-25 08:15:24 · 592 阅读 · 0 评论 -
BZOJ 4228 :Tibbar的后花园(EGF+牛顿迭代)
传送门 题意: 求n" role="presentation">nnn个点的无向图个数,满足: 任意三个点能互相到达的点a,b,c" role="presentation">a,b,ca,b,ca,b,c。 满足dis(a,b),dis(b,c),dis(a,c)" role="presentation">dis(a,b),dis(b,c),dis(a,c)dis(a,b),dis(b,c原创 2018-01-21 21:05:59 · 559 阅读 · 0 评论 -
NOI 模拟:黑暗(多项式求逆+分治FFT)
题意: n 个点的无向图,每条边都可能存在,一个图的权 值是连通块个数的 m 次方,求所有可能的图的权值和。 (n≤3e4,m≤15)(n≤3e4,m≤15)(n\le 3e4, m\le 15) 题解: 用第二类斯特林数消掉nmnmn^m : nm=∑i=1m{mi}(ni)i!nm=∑i=1m{mi}(ni)i!n^m = \sum_{i=1}^m \begin{Bma...原创 2018-03-23 07:30:43 · 912 阅读 · 0 评论 -
LOJ#556. 「Antileaf's Round」咱们去烧菜吧(牛顿迭代)
传送门 题解: 考前练练手感。 G=∏FiG=∏FiG = \prod F_i Fi={1−xai(bi+1)1−xai11−xaibi>0bi=0Fi={1−xai(bi+1)1−xaibi>011−xaibi=0F_i = \begin{cases} \frac{1-x^{a_i(b_i+1)}}{1-x^{a_i}} & b_i>0\\ \frac{1}{1-x^{a...原创 2018-07-16 20:35:31 · 577 阅读 · 0 评论 -
UOJ#428. 【集训队作业2018】普通的计数题(牛顿迭代)
传送门 题解: 把0操作看做是叶子,1操作看做非叶节点,一个操作在另一个操作删除,则另一个操作为这个操作的父亲,于是转化成了满足以下条件的nnn个点的树的计数: 1.父亲标号>儿子。 2.若一个点为非叶节点,记其儿子中叶子节点的数量为TTT,则若其儿子中有非叶节点,T∈AT\in AT∈A,否则T∈BT \in BT∈B。 首先可以发现的是BBB集合中有没有0都无所谓(因为必须选非空序列),...原创 2018-11-21 12:00:42 · 3084 阅读 · 0 评论