拉格朗日插值法
文章平均质量分 64
DZYO
Never stop
展开
-
拉格朗日插值法及应用
拉格朗日插值法一般方法重心拉格朗日插值法应用bzoj4559:成绩比较bzoj2655: calcbzoj3453:XLkxc拉格朗日插值法快速根据点值逼近函数在取点大于nnn的情况下解出nnn次多项式是唯一解。例如: ∑i=1ni=n(n+1)2∑i=1ni=n(n+1)2\sum\limits_{i=1}^ni=\frac{n(n+1)}...原创 2017-09-18 14:40:31 · 35142 阅读 · 4 评论 -
TCO14 3B 1000:TreeDistance (拉格朗日插值+矩阵树)
题解: 把原图的边看作白边,其他边看作黑边做矩阵树。 根据矩阵树的意义,最后结果为所有边权的乘积,我们扩域把白边边权看作111,黑边看做xxx,那么最后得到的多项式≤k≤k\le k的项即为答案。不过直接做太慢了,用FFTFFTFFT也只能做到n4lognn4lognn^4 \log n,考虑拉格朗日插值,做nnn次矩阵树最后插出原多项式即可,时间复杂度O(n4)O(n4)O(n^4)。...原创 2018-02-28 09:56:37 · 444 阅读 · 0 评论 -
Codechef :QPOLYSUM(FFT/拉格朗日插值)
传送门题意: 求:∑ni=1fiqi(n≤1e18,deg(fi)≤5e5)∑i=1nfiqi(n≤1e18,deg(fi)≤5e5)\sum_{i=1}^n f_i q^i( n\le 1e18, deg(f_i) \le 5e5)题解: 这道题有弱化版:BZOJ4126 也有弱化版的弱化版:BZOJ3516 我写了后者的题解:传送门因为这是一般形式,所以前者的题解就直接忽略...原创 2018-03-17 20:10:20 · 1222 阅读 · 0 评论 -
BJ模拟: 装饰地板(矩阵快速幂+拉格朗日插值+特征多项式)
题意: 给一个6∗R6∗R6*R的矩阵,有两种瓷砖(1∗21∗21*2,2∗12∗12*1),贡献分别为s1,s2s1,s2s_1,s_2,一种铺满矩阵的方案的贡献为所有瓷砖的贡献乘积之和,所有方案的贡献和(log2R≤8e3log2R≤8e3\log_2 R \le 8e3)。题解: 非常套路的题,裸的矩乘+状态压缩应该都会。不过因为logRlogR\log R很大,不能直接状压...原创 2018-03-13 19:56:31 · 306 阅读 · 0 评论 -
BZOJ5250 / LOJ#2473. 「九省联考 2018」秘密袭击(线段树合并+拉格朗日插值)
传送门题解: 一个显然的做法是枚举每个点计算贡献,把大于他的记为1,小于他的记为0,问题就转化为树上联通块大小等于k的个数。稍微转化一下,我们统计树上联通块第kkk大大等于iii的个数,不妨记为aiaia_i,那么:ans=∑i=1Wi(ai−ai+1)ans=∑i=1Wi(ai−ai+1)ans = \sum_{i=1}^W i(a_i-a_{i+1})我们发现,其实ans=∑i=...原创 2018-04-13 09:45:32 · 649 阅读 · 0 评论 -
Codechef : CLOWAY(特征多项式+二项式反演)
传送门题解: 先预处理出Gi,kGi,kG_{i,k}表示第iii个点走kkk步回到自己的个数(可以停留)。询问(l,r,k)(l,r,k)(l,r,k)时,我们把l,rl,rl,r的Gi,kGi,kG_{i,k}乘起来就得到了恰好kkk步走回自己的概率。 不过注意这样走可能存在某一步一张图都没有走,这时候是不合法的。 不过我们发现一个只走了jjj步的方案会被统计(kj)(kj)\b...原创 2018-05-17 20:15:26 · 590 阅读 · 0 评论 -
NOI模拟:棋赢
题解:nnn很小,最后是一个跟sum有关的jjj次多项式。维护sumasum^asuma的和即可。 转移矩阵构造可以用拉格朗日插值法。#include <bits/stdc++.h>using namespace std;typedef long long LL;const int RLEN=1<<18|1;inline char nc() { stat...原创 2018-09-21 15:47:19 · 215 阅读 · 0 评论