《线性代数》 李炯生\查建国\王新茂 中国科学技术大学 第2版 部分习题答案

百度了一圈没有靠谱点的答案,于是便有了这篇博客。
只写了一些自己觉得有价值的习题。

第一章 多项式

1.3 整除性与最大公因式

习题3

证明: 当 n = 6 m + 5 n=6m+5 n=6m+5时,多项式 x 2 + x y + y 2 x^2+xy+y^2 x2+xy+y2整除多项式 ( x + y ) n − x n − y n (x+y)^n-x^n-y^n (x+y)nxnyn; 当 n = 6 m + 1 n=6m+1 n=6m+1时,多项式 ( x 2 + x y + y 2 ) 2 (x^2+xy+y^2)^2 (x2+xy+y2)2整除多项式 ( x + y ) n − x n − y n (x+y)^n-x^n-y^n (x+y)nxnyn.这里 m m m是使 n > 0 n>0 n>0的整数,而 x , y x,y x,y是实数.

注意到 x 2 + x + 1 x^2+x+1 x2+x+1的根 w w w为三次单位根,且 w + 1 w+1 w+1为6次单位根.

用归纳法,对于 6 m + 5 6m+5 6m+5的情况,只需计算 f ( w ) f(w) f(w)是否为0,对于 6 m + 1 6m+1 6m+1的情况还需计算 f ′ ( w ) f'(w) f(w).

习题10

f ( x ) f(x) f(x) 2 n + 1 2n+1 2n+1次多项式, n n n为正整数, f ( x ) + 1 f(x)+1 f(x)+1 ( x − 1 ) n (x-1)^n (x1)n整除, f ( x ) − 1 f(x)-1 f(x)1 ( x + 1 ) n (x+1)^n (x+1)n整除.求 f ( x ) f(x) f(x).

First we have:
u ( x ) ( x − 1 ) n − 1 = v ( x ) ( x + 1 ) n + 1 u(x)(x-1)^n - 1 = v(x)(x+1)^n + 1 u(x)(x1)n1=v(x)(x+1)n+1

Because of ( ( x − 1 ) n , ( x + 1 ) n ) = 1 ((x-1)^n,(x+1)^n)=1 ((x1)n,(x+1)n)=1,there exists u ( x ) , v ( x ) u(x),v(x) u(x),v(x), such that:

u ( x ) ( x − 1 ) n − v ( x ) ( x + 1 ) n = 2 u(x)(x-1)^n - v(x)(x+1)^n = 2 u(x)(x1)nv(x)(x+1)n=2

if we find such u ( x ) , v ( x ) u(x),v(x) u(x),v(x),then ( u ( x ) + t ( x ) ∗ ( x + 1 ) n ) ( x − 1 ) n − 1 (u(x)+t(x)*(x+1)^n)(x-1)^n - 1 (u(x)+t(x)(x+1)n)(x1)n1 could be a valid f ( x ) f(x) f(x).

Notice that there exists a u ( x ) u(x) u(x), d e g ( u ( x ) ) < n deg(u(x)) < n deg(u(x))<n,then because:
u ( x ) = ( 1 − v ( x ) ( x + 1 ) n ) ( x − 1 ) − n u(x) = (1-v(x)(x+1)^n)(x-1)^{-n} u(x)=(1v(x)(x+1)n)(x1)n
So:
u ( i ) ( − 1 ) = ( ∏ j = 0 i − 1 ( − n − j ) ) ( − 2 ) − n − i u^{(i)}(-1) = (\prod_{j=0}^{i-1}(-n-j)) (-2)^{-n-i} u(i)(1)=(j=0i1(nj))(2)ni

Use Taylor’s expansion:
u ( x ) = ∑ i = 0 n − 1 u ( i ) ( − 1 ) i ! ( x + 1 ) i u(x) = \sum_{i=0}^{n-1}\frac{u^{(i)}(-1)}{i!}(x+1)^i u(x)=i=0n1i!u(i)(1)(x+1)i

1.5 实系数与复系数多项式

习题1

尝试构造 n n n次单位根.

习题2.(4)

一个小Trick: x 4 − a x 2 + 1 = ( x 2 + 1 ) 2 − ( 2 + a ) x 2 = ( x 2 + 2 + a x + 1 ) ( x 2 − 2 + a x + 1 ) x^4-ax^2+1=(x^2+1)^2-(2+a)x^2 = (x^2+\sqrt{2+a}x+1)(x^2-\sqrt{2+a}x + 1) x4ax2+1=(x2+1)2(2+a)x2=(x2+2+a x+1)(x22+a x+1)

习题10

证明:实系数多项式 f ( x ) f(x) f(x)对所有实数 x x x恒取非负实数值的充分必要条件是,存在实系数多项式 φ ( x ) , ψ ( x ) \varphi(x),\psi(x) φ(x),ψ(x),使得 f ( x ) = [ φ ( x ) ] 2 + [ ψ ( x ) ] 2 f(x) = [\varphi(x)]^2 + [\psi(x)]^2 f(x)=[φ(x)]2+[ψ(x)]2.

f ( x ) = g ( x ) [ ( x − z 1 ) . . . ( x − z t ) ] [ ( x − z 1 ˉ ) . . . ( x − z t ˉ ) ] = g ( x ) ( p ( x ) + i q ( x ) ) ( p ( x ) − i q ( x ) ) = ( g ( x ) p ( x ) ) 2 + ( g ( x ) q ( x ) ) 2 \begin{aligned}f(x)&=g(x)[(x-z_1)...(x-z_t)][(x-\bar{z_1})...(x-\bar{z_t})]\\&=g(x)(p(x)+iq(x))(p(x)-iq(x)) \\&= (\sqrt{g(x)}p(x))^2 + (\sqrt{g(x)}q(x))^2\end{aligned} f(x)=g(x)[(xz1)...(xzt)][(xz1ˉ)...(xztˉ)]=g(x)(p(x)+iq(x))(p(x)iq(x))=(g(x) p(x))2+(g(x) q(x))2

1.6 整系数与有理系数多项式

例1

证明分圆多项式在 Z \Z Z上不可约

f ( x ) = x p − 1 x − 1 f(x) = \frac{x^p-1}{x-1} f(x)=x1xp1,根为 w 1 , . . . , w p − 1 w^1,...,w^{p-1} w1,...,wp1, p p p为奇数,又 ( x − w i ) ( x − w p − 1 ) (x-w^i)(x-w^{p-1}) (xwi)(xwp1)不是有理系数,故不可约.

例2

a 1 , . . . , a n a_1,...,a_n a1,...,an n n n个不同的整数, n ≥ 2 n \ge 2 n2,证明:多项式 ∏ i ( x − a i ) − 1 \prod_i (x-a_i) -1 i(xai)1 Q \mathbb{Q} Q上不可约.

反证.设 f ( x ) = g ( x ) h ( x ) f(x)=g(x)h(x) f(x)=g(x)h(x),则 g ( x ) , h ( x ) g(x),h(x) g(x),h(x) n n n个点上取相反数,故 g ( x ) + h ( x ) = 0 ⇒ g ( x ) = − h ( x ) ⇒ f ( x ) = − g 2 ( x ) g(x)+h(x)=0 \Rightarrow g(x)=-h(x) \Rightarrow f(x)=-g^2(x) g(x)+h(x)=0g(x)=h(x)f(x)=g2(x) f ( x ) f(x) f(x)首项为1矛盾.

习题2

f ( x ) = ∑ i = 0 n a i x i f(x)=\sum_{i=0}^na_ix^i f(x)=i=0naixi是整系数多项式,且素数 p p p满足: p ∤ a 0 , p ∤ a 1 , . . . , p ∤ a k , p ∣ a k + 1 , . . . , p ∣ a n , p 2 ∤ a n p\not |a_0, p \not | a_1, ..., p \not | a_k, p|a_{k+1},...,p|a_n, p^2 \not| a_n pa0,pa1,...,pak,pak+1,...,pan,p2an.证明 f ( x ) f(x) f(x)具有次数 ≥ n − k \ge n-k nk的整系数不可约因式.

反证.设$f(x)=g(x)h(x)$,$g(x)=\sum_{i=0}^sb_ix^i$,$h(x)=\sum_{i=0}^tc_ix^i$,$p|b_s,p\not|c_t,p\not|b_0,p\not |c_1$,则$\exist m, p \not | b_{s-m}, p|b_{s-m+1},p|_{s-m+2}... \Rightarrow p \not|a_{n-m} \Rightarrow n-m \le k \Rightarrow m \ge n-k$,对$g$进行归纳.

习题6

设整系数多项式 f ( x ) f(x) f(x) x x x 4 4 4个不同整数值上取值为 1 1 1,则 f ( x ) f(x) f(x) x x x的其他整数值上的值不能是 − 1 -1 1.

证明是显然的.

习题7

证明:设正整数 n ≥ 12 n \ge 12 n12,并且 n n n次整系数多项式 f ( x ) f(x) f(x) x x x ⌊ n 2 ⌋ + 1 \lfloor\frac{n}{2}\rfloor + 1 2n+1个以上的整数值上取值为 ± 1 \pm 1 ±1,则 f ( x ) f(x) f(x) Q \mathbb{Q} Q上不可约.

根据习题6,取值必然全为 1 1 1或全为 − 1 -1 1,然后反证, f = g h f=gh f=gh,则 g = − h g=-h g=h g = h g=h g=h, f = − g 2 f=-g^2 f=g2 f = g 2 f=g^2 f=g2,分别与取值为正和取值为负矛盾.

习题8

设整系数多项式 a x 2 + b x + 1 ax^2+bx+1 ax2+bx+1在有理数域 Q \mathbb{Q} Q上不可约,并且 φ ( x ) = ∏ i ( x − a i ) \varphi(x)=\prod_{i}(x-a_i) φ(x)=i(xai),其中 a 1 , a 2 , . . . , a n a_1,a_2,...,a_n a1,a2,...,an n n n个不同的整数, n ≥ 7 n \ge 7 n7,证明:多项式 f ( x ) = a [ φ ( x ) ] 2 + b φ ( x ) + 1 f(x) = a[\varphi(x)]^2+b\varphi(x)+1 f(x)=a[φ(x)]2+bφ(x)+1 Q \mathbb{Q} Q上不可约.

反证. f ( x ) = g ( x ) h ( x ) f(x)=g(x)h(x) f(x)=g(x)h(x) n n n个点上取1,则 g = h ⇒ f = g 2 ⇒ g g=h \Rightarrow f=g^2 \Rightarrow g g=hf=g2g n n n个点取1 ⇒ g = c φ ( x ) + 1 ⇒ f ( x ) = ( c φ ( x ) + 1 ) 2 \Rightarrow g = c\varphi(x)+1 \Rightarrow f(x)=(c\varphi(x)+1)^2 g=cφ(x)+1f(x)=(cφ(x)+1)2 a x 2 + b x + 1 ax^2+bx+1 ax2+bx+1不可约矛盾.

1.8 对称多项式

习题3

设三次方程 x 3 + a x 2 + b x + c x^3+ax^2+bx+c x3+ax2+bx+c的三个根是某个三角形的内角的正弦.证明: a ( 4 a b − a 3 − 8 c ) = 4 c 2 a(4ab-a^3-8c)=4c^2 a(4aba38c)=4c2

证明:利用海伦公式化简即可.

习题6

设对称多项式 f ( x 1 , x 2 , . . . , x n ) f(x_1,x_2,...,x_n) f(x1,x2,...,xn)满足: f ( x 1 + a , x 2 + a , . . . , x n + a ) = f ( x 1 , x 2 , . . . , x n ) f(x_1+a,x_2+a,...,x_n+a) = f(x_1,x_2,...,x_n) f(x1+a,x2+a,...,xn+a)=f(x1,x2,...,xn), a a a 为任意常数.设 f ( x 1 , x 2 , . . . , x n ) = g ( σ 1 , σ 2 , . . . , σ n ) f(x_1,x_2,...,x_n) = g(\sigma_1,\sigma_2,...,\sigma_n) f(x1,x2,...,xn)=g(σ1,σ2,...,σn).证明: ∑ i = 1 n ( n − i + 1 ) σ i − 1 ∂ g ∂ σ i = 0 \sum_{i=1}^{n}(n-i+1)\sigma_{i-1}\frac{\partial g}{\partial \sigma_{i}} = 0 i=1n(ni+1)σi1σig=0

证:首先 ∑ i ∂ σ k x i = ( n − k + 1 ) σ k − 1 \sum_i\frac{\partial \sigma_k}{x_i} = (n-k+1)\sigma_{k-1} ixiσk=(nk

  • 26
    点赞
  • 63
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值