FMT
DZYO
Never stop
展开
-
BZOJ4036: [HAOI2015]按位或(FMT)
传送门 题意: 刚开始你有一个数字0,每一秒钟你会随机选择一个[0,2n−1][0,2^n-1]的数字,与你手上的数字进行按位或操作。选择数字ii的概率是pip_i。保证0=p[i]=10,Σp[i]=1Σp[i]=1问期望多少秒后,你手上的数字变成2n−12^n-1。 题解: 构造这个概率序列的集合幂级数: f=∑s∈2Upsxsf=\sum_{s\in 2^U} p_sx^s原创 2018-01-17 17:16:01 · 390 阅读 · 0 评论 -
UOJ#348. [WC2018]州区划分(FMT)
传送门 题解: 显然的DP :g[S]f[S]=∑i∈Sf[S⊕i]g[i]g[S]f[S]=∑i∈Sf[S⊕i]g[i]g[S] f[S]=\sum_{i\in S} f[S\oplus i]g[i]。 不会做,可以考虑加一个状态优化掉子集转移。 记f[i][S]f[i][S]f[i][S]表示有iii个城市被选,按位或之后为SSS,那么可以去除子集转移的限制,因为f[n][U]f[n]...原创 2018-02-18 16:39:01 · 530 阅读 · 0 评论 -
Topcoder SRM 710 900pts:Hyperboxes(FMT)
题解: 对于一维是否相交用2(m2)2^{\binom{m}{2}}2(2m)来表示一下。 然后多维直接FMT做并卷积即可,不过对于一维初始化就需要大力删去重复状态来剪枝了。 #include <bits/stdc++.h> using namespace std; const int mod=998244353; inline int add(int x,int y) {retu...原创 2018-11-13 08:54:47 · 347 阅读 · 0 评论