线性代数知识整理

线性代数知识点整理

 

1.行列式的性质

2.抽象型行列式——解法

3.伴随矩阵的性质

4.逆矩阵的性质

5.逆矩阵——解法

方法一:用伴随

方法二:用初等变换

方法三:用定义

方法四:用单位矩阵恒等变形

方法五:用分块矩阵

6.矩阵的秩定理

定理2

7.矩阵的秩性质

8.具体向量组如何判定相关无关

9.抽象向量组如何证明无关

方法一:用定义

方法二:用秩

方法三:用结论

10.特征值和特征向量的性质

11.相似矩阵的性质

12.矩阵相似对角化的条件

13.正定定理

14.等价、相似、合同


1.行列式的性质

2.抽象型行列式——解法

解题思路:对抽象型行列式,计算方法主要是利用行列式的性质,矩阵的性质,特征值及相似等。主要的公式有:

3.伴随矩阵的性质

4.逆矩阵的性质

5.逆矩阵——解法

方法一:用伴随

方法二:用初等变换

方法三:用定义

方法四:用单位矩阵恒等变形

方法五:用分块矩阵

6.矩阵的秩定理

定理2

初等变换不改变A的秩。

行列梯形矩阵的秩等于其非零行数。

注:若零行(若有的话)位于最低行,且每行左起第一个非零元素所在的列下方元素都是0,称这种矩阵为行列式为行阶梯矩阵

任何矩阵都可通过初等行变换化为行阶梯矩阵。

7.矩阵的秩性质

一个结论&证明:

8.具体向量组如何判定相关无关

9.抽象向量组如何证明无关

以三个向量1,2,3为例:

方法一:用定义

方法二:用秩

方法三:用结论

10.特征值和特征向量的性质

11.相似矩阵的性质

12.矩阵相似对角化的条件

13.正定定理

14.等价、相似、合同

下图来自复旦邱锡鹏老师的《神经网络与深度学习》:

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

山顶夕景

小哥哥给我买个零食可好

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值